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LECTURE 12

Special Solutions of Laplace's Equation

1. Separation of Variables with Respect to Cartesian Coordinates

Suppose

�(x; y) = X(x)Y (y)(12.1)

is a solution of

@2�

@x2
+
@2�

@y2
= 0 :(12.2)

Then we must have

Y
d2X

dx2
+X

d2Y

dy2
= 0 :(12.3)

Applying the usual separation of variables argument, we �nd

d
2
X

dx2
+ �2X = 0 ) X(x) = A sin(�) + B cos(�)

d2Y
dy2

� �2Y = 0 ) Y (y) = Ce��y +De�y :
(12.4)

when the separation constant K is a positive real number �2 > 0 . The possibility that the K = 0 should
not be excluded, however. For this special case we would have

d2X
dx2

= 0 ) X(x) = ax+ b ;
d2Y
dy2

= 0 ) Y (y) = cy + d :
(12.5)

Nor should we exclude the case when K = ��2 < 0:

d2X
dx2

� �2X = 0 ) X(x) = Ae��x +Be�x

d2Y
dy2

+ �2Y = 0 ) Y (y) = C sin(�y) +D cos(�y) :
(12.6)

Thus separation of variables yields three 4-parameter families of solutions.

�0(x; y) = axy + bx+ cy + d

��(x; y) = Ae�y sin(�x) +Be��y sin(�x) + Ce�y cos(�x) +De��y cos(�x)
�i�(x; y) = Ae�x sin(�y) +Be��x sin(�y) + Ce�x cos(�y) +De��x cos(�y)

(12.7)

2. Separation of Variables with Respect to Polar Coordinates

If we make a change of variables to polar coordinates

x = r cos(�)
y = r sin(�)

r =
p
x2 + y2

� = tan�1
�
y

x

�(12.8)
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52 12. SPECIAL SOLUTIONS OF LAPLACE'S EQUATION

then

@

@x
=

@r

@x

@

@r
+
@�

@x

@

@�
= cos(�)

@

@r
�
sin(�)

r

@

@�

@

@y
=

@r

@y

@

@r
+
@�

@y

@

@�
= sin(�)

@

@r
+

cos(�)

r

@

@�

@2

@x2
=

�
cos(�) @

@r
� sin(�)

r
@
@�

��
cos(�) @

@r
� sin(�)

r
@
@�

�
= cos2 @2

@r2
� 2 sin(�) cos(�)

r
@
@r

@
@�

+ sin2(�)
r2

@2

@�2

+ cos(�) sin(�)
r2

@
@�

+ sin2(�)
r

@
@r

+ sin(�) cos(�)
r

@
@�

@2

@y2
=

�
sin(�) @

@r
+ cos(�)

r
@
@�

��
sin(�) @

@r
+ cos(�)

r
@
@�

�
= sin2(�) @

2

@r2
+ 2 cos(�) sin(�)

r
@
@r

@
@�

+ cos2(�)
r2

@2

@�2

� sin(�) cos(�)
r2

@
@�

+ cos2(�)
r

@
@r

� cos(�) sin(�)
r2

@
@�

and

@2

@x2
+

@2

@y2
=

@2

@r2
+

1

r

@

@r
+

1

r2
@2

@�2
:(12.9)

Thus, in polar coordinates Laplace's equation takes the form

@2�

@r2
+

1

r

@�

@r
+

1

r2
@2�

@�2
= 0 :(12.10)

If we set

�(r; �) = R(r)�(�) :(12.11)

and plug (12.11) into (12.10) and then divide by R(r)�(�) then we obtain

R00

R
+

R0

rR
+

�00

r2�
= 0

or

r2
R00

R
+ r

R0

R
= �

�00

�
:

Applying the separation of variables argument we now look for solutions of

r2R00 + rR0 � �2R = 0
�00 + �2� = 0

(12.12)

If �2 6= 0, then the second equation has as solutions

�(�) = A cos(��) + B sin(��) :(12.13)

In order for such solutions to be continuous across the ray � = 0 (i.e. so that �(2�) = �(0)) we must
demand that � = n 2 N = f1; 2; 3; : : :g. For such � the �rst equation in (12.12) is an Euler-type equation
which has as solutions

R(r) = Arn + Br�n :(12.14)

If �2 = 0, then (12.12) reduces to

rR00 + R0 = 0
�00 = 0

(12.15)

The general solution of the second equation is obviously

�(�) = a� + b :(12.16)

To solve the �rst, we set W = R0 so that we can reduce it to the following �rst order ODE

�
1

r
=
W 0

W
=

d

dr
(ln(W ))(12.17)
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Integrating both sides of this equation yields

� ln jrj = ln (W ) + C0(12.18)

or

W =
C

r
(12.19)

Replacing the left hand side of (12.19) R0 and then integrating both sides of yields

R(r) = C ln jrj+D(12.20)

We thus arrive at the following two families of solutions

�n(r; �) = Arn cos(n�) +Brn sin(n�) + Cr�n cos(n�) +Dr�n sin(n�)(12.21)

�0(r; �) = a ln jrj� + b ln jrj+ c� + d(12.22)

From the solution �0(r; �) with 0 = a = c = d, we can infer the existence of a solution of the form

� (x; y) = ln
���(x� xo)

2 + (y � yo)
2
���

It can be easily checked that this is the only solution (up to a multiplicative and/or additive constant)
of Laplace's equation that depends only the distance from the point (xo; yo). It is called the fundamental

solution of Laplace's equation.

3. Polynomial Solutions

We have already seen that

�(x; y) = axy + bx+ cy + d

is a solution of Laplace's equation. Let us now look to see if there are other polynomial solutions. Suppose

�(x; y) = Ax2 + By2

then

0 =
@2�

@x2
+
@2�

@y2
= A+ B ) B = �A :

Thus,

�(x; y) = A
�
x2 � y2

�
is a solution of Laplace's equation.

Similarly, if we set

�(x; y) = Ax3 + Bx2y + Cxy2 +Dy3

then

0 =
@2�

@x2
+
@2�

@y2
= 6Ax+ 2By + 2Cx+ 6Dy )

C = �3A
B = �3D

and so

�(x; y) = A
�
x3 � 2xy2

�
+ B

�
y3 � 3x2y

�
will be a solution of Laplace's equation.

Now let �(x; y) be an arbitrary homogeneous polynomial of degree n:

�(x; y) =
nX
i=0

aix
n�iyi :(12.23)
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Then if this is to be a solution of Laplace's equation we must have

0 =
@2�

@x2
+
@2�

@y2
(12.24)

=
nX
i=0

(n � i)(n � i � 1)aix
n�i�2yi +

nX
i=0

i (i � 1) aix
n�iyi�2(12.25)

=
n�2X
i=0

(n � i) (n� i � 1) aix
n�i�2yi +

n�2X
i=0

(i+ 2) (i+ 1) ai+2x
n�2�iyi(12.26)

=
n�2X
i=0

((n � i)(n � i� 1)ai + (i + 2)(i + 1)ai+2)x
n�2�iyi(12.27)

and so (12.23) will be a solution of Laplace's equation if the coe�cients ai satisfy the following recursion
relation

ai+2 =
(n� i)(n � i� 1)

(i+ 1)(i+ 2)
ai :(12.28)

Note that these recursion relations imply that for each n 2 N there are precisely two linearly independent
homogeneous polynomial solutions of Laplace's equation (since (12.28) tells that all the coe�cients ai are
completely determined by a0 and a1).

4. Series Solutions

Consider the following PDE/BVP

�rr +
1
r
�r +

1
r2
��� = 0

�(R; �) = f(�)
(12.29)

which is just Laplace's equation in polar coordinates with Dirichlet boundary conditions imposed on the
boundary of the circle r = R.

To construct a solution of (12.29) we shall �rst expand the solution �(r; �) in a series of �-dependent
eigenfuctions:

�(r; �) =
1

2
a0(r) +

1X
n=1

(an(r) cos(n�) + bn(r) sin(n�)) :(12.30)

We note that the trigonometric functions cos(n�) and sin(n�) are eigenfunctions of the Sturm-Liouville
problem with di�erential equation

�00 + �2� = 0

(compare with (12.12) and boundary conditions

�(0) = �(2�) :

Inserting (12.30) into (12.29) we obtain

0 = a000 +
1
r
a00 +

P
1

n=1

��
a00n +

1
r
a0n
�
cos(n�) +

�
b00n +

1
r
b0n
�
sin(n�)

�
+
P
1

n=1

�
�n2an cos(n�) � n2bn sin(n�)

�(12.31)
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Multiplying both sides by cos(n�) or sin(n�), integrating with respect to � from 0 to 2�, and employing the
identities R 2�

0 cos(n�)d� =

�
2� ; n = 0
0 ; n 6= 0

R 2�
0 sin(n�) cos(m�)d� = 0 ; 8 n;m 2ZR 2�
0 cos(n�) cos(m�)d� = ��nmR 2�
0 sin(n�) sin(m�)d� = ��nm

(12.32)

we obtain

a00n +
1
r
a0n �

n2

r2
an = 0 ; n = 0; 1; 2; 3; : : :

b00n +
1
r
b0n �

n2

r2
bn = 0 ; n = 1; 2; 3; : : :

(12.33)

These are all Euler type ODEs which have as their general solution

R(r) = Arn +Br�n ; n 6= 0
R(r) = A+ B ln jrj ; n = 0

(12.34)

In order for our solution to be regular at the origin we must exclude solutions proportional to r�n and ln jrj.
We therefore take

an(r) = Anr
n ; n = 0; 1; 2; � � �

bn(r) = Bnr
n ; n = 1; 2; 3; � � �

(12.35)

to be the appropriate solutions of (12.33). Hence, (12.25) becomes

�(r; �) =
1

2
A0 +

1X
n=1

(Anr
n cos(n�) + Bnr

n sin(n�)) :(12.36)

To �x the constants An; Bn we now impose the boundary condition at r = R;

f(�) =
1

2
A0 +

1X
n=1

(AnR
n cos(n�) + BnR

n sin(n�)) :(12.37)

Multiplying both sides of (12.37) by cos(m�) or sin(m�) and integrating from 0 to 2� then yields

An = 1
�Rn

R 2�
0 f(�) cos(n�)d� ; n = 0; 1; 2; 3; : : :

Bn = 1
�Rn

R 2�
0

f(�) sin(n�)d� ; n = 1; 2; 3; : : :
(12.38)

Homework: Problem 4.5.4


