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LECTURE 12

Special Solutions of Laplace’s Equation

1. Separation of Variables with Respect to Cartesian Coordinates

Suppose
(12.1) ¢(x,y) = X(2)Y ()
1s a solution of

8¢ 0%¢
Then we must have

22X A2y
(12.3) YW + d—yz =0

Applying the usual separation of variables argument, we find

(12.4) TEANX = 0= X(@)=Asin(\) + Beos())
' L XY = 0 = Y(y)=Ce 4Dl

when the separation constant K is a positive real number A2 > 0 . The possibility that the KX = 0 should
not be excluded, however. For this special case we would have

d2)§ = X = b
(12.5) a7 0 = (z) =az+b |
oz = 0 = Y()=c+d
Nor should we exclude the case when K = —\? < 0:
(12.6) GE-NX = 05 X(@) = A 4B
' (fT’Q +A%Y = 0 = Y(y)=Csin(\y) + Dcos(Ay)
Thus separation of variables yields three 4-parameter families of solutions.
do(z,y) = axy+br+ecy+d
(12.7) or(z,y) = AeMsin(Az) + Be M sin(Az) + Ce? cos(Az) + De™?Y cos(Az)
pir(z,y) = Aersin(Ay) + Be  sin(Ay) + Cer? cos(Ay) + De™?® cos(y)

2. Separation of Variables with Respect to Polar Coordinates

If we make a change of variables to polar coordinates

(12.8) z = rcos(0) ro= Va4

y = rsin(f) 0 = tan~! (%)

xr
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52 12. SPECIAL SOLUTIONS OF LAPLACE’S EQUATION

then
o0 w0 oo 0 su0) 0
dr Oz dr  dxdb or r 00
o _ o w0 o0 )0
gy — Oyor Oyoo or r 06
% = (cos(@)% — J_lsmTG (,?—9) (cos(@)% — wnre %)
_ COSQ%_QSIHQTCOSQ %%+s1n2€6@_‘;
cos(f) sin (8 sin? (0 sin(6) cos(8
+ (22 ()5’9_9_1_ r()a%'i' ()T ()%
2 = (sin(0)Z + <02 (sin(o) £ + <0 2)
— SiHZ(G)% + 2cos(€2s1n(€)%% + COS7.2(€)66_;2
sin(€)cos(€)i+ cos2(€)i _ cos(€)sin(€)i
r2 o6 r r r2 o6
and
52 52 52 10 1 82
12. —t =+ -+ ===
(12.9) Ox? + dy:  Or? + ror + r2 902
Thus, in polar coordinates Laplace’s equation takes the form
8%¢  10¢ 1 8%
12.1 — -+ == =
( 0) or:  rdr 2002 0
If we set
(12.11) ¢(r,0) = R(r)O(0)
and plug (12.11) into (12.10) and then divide by R(r)©(f) then we obtain
R// R/ @//
"t RTe !
or

Applying the separation of variables argument we now look for solutions of
PR+ rR —XNR = 0
(12.12) @//+/\2® = 0

If A2 £ 0, then the second equation has as solutions
(12.13) O(0) = Acos(Af) + Bsin(0))

In order for such solutions to be continuous across the ray 6§ = 0 (i.e. so that ©(2n) = ©(0)) we must
demand that A =n € N={1,2,3,...}. For such A the first equation in (12.12) is an Euler-type equation
which has as solutions

(12.14) R(r) = Ar" 4+ Br™"
If A2 = 0, then (12.12) reduces to

(12.15) ri +(§/: i 8

The general solution of the second equation is obviously

(12.16) O@) =abl+b

To solve the first, we set W = R’ so that we can reduce it to the following first order ODE
(12.17) SE (In(W))

r W dr



3. POLYNOMIAL SOLUTIONS 53

Integrating both sides of this equation yields

(12.18) —Inlr|=In(W)+C’

or

(12.19) W= g

Replacing the left hand side of (12.19) R’ and then integrating both sides of yields
(12.20) R(r)=Clnlr|+ D

We thus arrive at the following two families of solutions
(12.21) én(r,0) = Ar”cos(nf) + Br"sin(nf) + Cr~" cos(nfl) + Dr~" sin(nb)
(12.22) $o(r,0) = aln|r|l@+bln|r|+cfd+d

From the solution ¢q(r, ) with 0 = a = ¢ = d, we can infer the existence of a solution of the form

¢ (x,y)=In|(z—2,)" + (y — y)°

It can be easily checked that this is the only solution (up to a multiplicative and/or additive constant)
of Laplace’s equation that depends only the distance from the point (z,,y,). It is called the fundamental
solution of Laplace’s equation.

3. Polynomial Solutions

We have already seen that
$(e,y) =axy+br+cy+d

is a solution of Laplace’s equation. Let us now look to see if there are other polynomial solutions. Suppose

o(x,y) = Az? + By
then

0:% 227(5:144-3 = B=-A

Thus,

$(x,y) = A(2* = ¢)

1s a solution of Laplace’s equation.

Similarly, if we set
o(x,y) = Axr® + Ba’y + Cry® + Dy?
then
0%¢

0%¢

W Q
|

—-3D
and so
d(r,y) = A (J:S — Qxyz) + B (y3 — 31‘23/)

will be a solution of Laplace’s equation.

Now let ¢(z,y) be an arbitrary homogeneous polynomial of degree n:

n

(12.23) é(x,y) = Zaixn_iyi

i=0
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Then if this 1s to be a solution of Laplace’s equation we must have

_ PP 99
(12.24) 0 = w—k w
(1225) — Z(n_l)(n_l_l) nlzl_i_z Z—l 77,222
i=0
n—2 n—2
(12.26) = Z(n—i)(n—z—l) "ZZZ—I—Z z—|—2(z—|—1)az+2x"22yl
=0 =0
n—2 o
(1227) = Z((n —z)(n Y 1)ai_|_ (Z—|—2)(Z—|— l)ai+2) l‘n_z_ZyZ
=0

and so (12.23) will be a solution of Laplace’s equation if the coefficients a; satisfy the following recursion
relation

(n—i)(n—i—1)
(i+1)(i+2)

(12.28) igs =

2]
Note that these recursion relations imply that for each n € IN there are precisely two linearly independent

homogeneous polynomial solutions of Laplace’s equation (since (12.28) tells that all the coefficients a; are
completely determined by a¢ and ay).

4. Series Solutions

Consider the following PDE/BVP

¢7‘7‘ + %¢7‘ + ,.%¢€€ = 0
(12.29) o(R,0) = f(0)

which is just Laplace’s equation in polar coordinates with Dirichlet boundary conditions imposed on the
boundary of the circle r = R.

To construct a solution of (12.29) we shall first expand the solution ¢(r,#) in a series of #-dependent
eigenfuctions:

oQ

(12.30) é(r,0) = —ao )+ Z an () cos(nd) + by (r) sin(nd))
We note that the trigonometric functions cos(nf) and sin(nf) are eigenfunctions of the Sturm-Liouville
problem with differential equation
0"+ A3’0 =0
(compare with (12.12) and boundary conditions

©(0) = ©(27)

Inserting (12.30) into (12.29) we obtain

0 = af+Lap+3 .7, ((af + Lal,) cos(nd) + (b + Lb,) sin(nd))

(12.31) + 5% (—n2a, cos(nf) — n2b, sin(nd))
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Multiplying both sides by cos(nf) or sin(nf), integrating with respect to # from 0 to 27, and employing the
identities

2 _ 2m , n=20
Jy cos(nf)df = { 0 om0
(12.32) f%% sin(nf)cos(mf)dé = 0 , Vn,meZ
o i cos(nf) cos(mb)dd = wopm
fozﬂ sin(nf)sin(m@)dd = wipm
we obtain
(12.33) a +Ltd,—2a, = 0, n=0,1,23,...
' B4+ Lb, —82h, = 0, n=1,2,3,...
These are all Euler type ODEs which have as their general solution
(12.34) R(r) = A"+ Br™" . n#0

R(r)

In order for our solution to be regular at the origin we must exclude solutions proportional to #~" and In |r|.
We therefore take

A+ Blnjr| , n=0

a”(r) = Anrn ’ n:0a1a2a"'
(12.35) bo(r) = Bpr™ , n=1,2,3 -
to be the appropriate solutions of (12.33). Hence, (12.25) becomes
1 Oo n n .z
(12.36) é(r,0) = §A0 + Z (Apr" cos(nb) + Byr" sin(nf))
n=1

To fix the constants A, , B, we now impose the boundary condition at r = R;

(12.37) f(0) = %Ao + Y (AuR" cos(nf) + B, R sin(n))
n=1

Multiplying both sides of (12.37) by cos(m#) or sin(m#) and integrating from 0 to 27 then yields

(12.38) An = = [T F(O) cos(n)dd  n=0,1,2,3,. ..
' By = —k= [T f(0)sin(nf)d6 , n=1,2,3,...

Homework: Problem 4.5.4



