
LECTURE 11

Laplace's Equation

1.

We now turn to the last basic example of a second order linear PDE. The PDE

@2�

@x2
+
@2�

@y2
= 0(11.1)

is called Laplace's equation. Solutions of Laplace's equation are often called harmonic functions. The
corresponding inhomogeneous PDE

@2�

@x2
+
@2�

@y2
= f(x; y)(11.2)

is called Poisson's equation.

These PDEs arise in a variety of mathematical and physical contexts. For example, both the imaginary and
real parts of an analytic function on C = R2 satisfy Laplace's equation. Poisson's equation arises as the
equation for the electric potential �(x; y) at the point (x; y) 2 R2 in the presense of a charge distribution
prescribed by a function f(x; y); or as the equation for a temperature distribution �(x; y) in a thermal
equilibrium problem.

Associated with the two physical interpretations mentioned above are two special types of boundary condi-
tions.

Dirichlet Boundary Conditions

In a thermal equilibrium problem is seems reasonable to expect the equilibrium temperature distribution of
a planar object to be completely determined by the temperature distribution imposed on its boundary. The
corresponding mathematical problem would be phrased as follows: Let R be a closed region of the plane
and let @R denote the boundary of R, �nd a (the) function �(x; y) such that

@2�

@x2
+ @2�

@y2
= 0 ; 8 (x; y) 2 R

�(x; y) = �o(x; y) ; 8 (x; y) 2 @R
(11.3)

Such a PDE/BVP is called a Dirichlet problem.

Neumann Boundary Conditions

Consider the following physical problem: A planar object is surrounded by material capable of transfering
heat at a prescribed rate f(x; y); �nd the equilibrium temperature inside the object.

The corresponding mathematical problem would be phrased as follows: Let R be a closed region of the
plane and let @R denote the boundary of R, �nd a (the) function �(x; y) such that

@2�

@x2
+ @2�

@y2
= 0 ; 8 (x; y) 2 R

@�

@n
(x; y) = kf(x; y) ; 8 (x; y) 2 @R :

(11.4)
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(Here @�

@n
is the derivative of � in the direction normal to the boundary.) Such a PDE/BVP is called a

Neumann problem.

It should be remarked that the physical problem is ill-posed unless the total rate at which heat 
ows into
the object is zero (otherwise it will never be in equilibrium); mathematically this would correspond to the
condition

0 =

Z
@R

@�

@n
ds =

Z
@R

f(x; y)ds = 0 :(11.5)

Indeed, (11.4) will have no solutions unless (11.5) is satis�ed.

2. Simple Properties of Harmonic Functions

Let �(x; y) be a solution of Laplace's equation in a region R � R2. Recall that, we may interprete �(x; y)
physically as the equilibrium temperature at the point (x; y) of some planar object of shape R. This
physical interpretation suggests several properties which solutions of Laplace's equation might be expected
to possess.

First of all, we should not expect �(x; y) to possess any local maximumwithin R. For if the temperature of
the object were higher at one point (xo; yo), then there would be continual heat 
ow away from this point.
But then the temperature at (xo; yo) would not be constant and so we would not have equilibrium.

Let us now consider the properties of harmonic functions in a more formal manner. Let R be a closed region
in the plane and let �(x; y) be a solution of

@2�

@x2
+
@2�

@y2
= 0 ; 8 (x; y) 2 R :(11.6)

Then

0 =
R
R

h
@2�

@x2
+ @2�

@y2

i
dA

=
R
R

h
@
@x
�x +

@
@y
�y

i
dA

=
R
R
r � (r�) dA

=
R
@R

r� � dn

=
R
@R

@�

@n
ds

(11.7)

In the fourth step we have simply applied Gauss's Theorem in R2 (the Divergence Theorem in the Plane).
Note how this result proves the consistency condition (11.5).

Now consider any point P = (xo; yo) in R and let (r; �) be a polar coordinate system with origin P . De�ne
 (r; �) to be the value of �(x; y) at the corresponding point:

 (r; �) � � (xo + r cos(�); yo + r sin(�)) :

Construct a circle C� of radius � about P and consider the average value 	(�) of  (r; �) on this circle:

	(�) =
1

2�

Z 2�

0

 (�; �)d� :(11.8)

Di�erentiating with respect to � and using @ 

@�
= @ 

@n
, we obtain

@	

@�
=

1

2�

Z 2�

0

@ 

@�
d� =

1

2��

Z
C

@ 

@n
ds(11.9)

But since  is a harmonic within C, equation (11.7) implies that the right hand side of (11.9) must vanish.
In other words, @	

@�
= 0, and so the value of 	(�) is independent of �. Since 	(0) =  (0; �) = � (xo; yo) we

have just proved the following:

Proposition 11.1. The value of a harmonic function at a point P is equal to the average of its values on

the circumference of any circle centered about P .
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The following corollary follows by averaging the constant function 	(�) over the entire disk of radius �.

Corollary 11.2. The value of a harmonic function at a point P is equal to the average of its values over

the area of any circle centered about P .

These two essentially equivalent results are refered two collectively as the Mean Value Theorem for harmonic
functions. Here is another easy result.

Corollary 11.3. Let R be a closed simply connected domain in R2 and let � be a solution of

@2�

@x2
+ @2�

@y2
= 0 ; 8 (x; y) 2 R ;

�(x; y) = 0 ; 8 (x; y) 2 @R :
(11.10)

Then �(x; y) = 0 for all (x; y) 2 R.

Proof. We �rst recall some basic theorems concerning the extrema of continuous functions of several
variables.

Theorem 11.4. If R is a closed bounded subset of Rn and f is a continuous function on R, then f attains

a maximal value and a minimal value on R.

Corollary 11.5. If a continuous function f has no local extrema in the interior of a closed region R � R
n,

then its maximal and minimal values on R must occur on the boundary of R.

In the case at hand, we know that � has no local extrema within R and that the values of � on the boundary
of R are restricted to zero. Therefore, 0 is both the maximal and minimal value of � on R. Hence, �(x; y) = 0
for all (x; y) 2 R.

Theorem 11.6. Let R be a closed simply connected domain in R2. Then there is a unique solution to the

following Dirichlet problem

@2�

@x2
+ @2�

@y2
= f(x; y) ; 8 (x; y) 2 R ;

�(x; y) = h(x; y) ; 8 (x; y) 2 @R :
(11.11)

Proof. Suppose �1 and �2 are two solutions of (11.11). Then there di�erence �1 � �2 satis�es

@2

@x2
(�1 � �2) +

@2

@y2
(�1 � �2) =

@2�1

@x2
+
@2�1

@y2
�
@2�2

@x2
�
@2�2

@y2
(11.12)

= f(x; y) � f(x; y)(11.13)

= 0(11.14)

and

(�1 � �2)
��
@R

= �1 j@R � �2j@R(11.15)

= h(x; y) j@R � h(x; y) j@R(11.16)

= 0(11.17)

In other words  = �1 � �2 must be a solution of

@2 

@x2
+
@2 

@y2
= 0 ; 8 (x; y) 2 R ;

 (x; y) = 0 ; 8 (x; y) 2 @R :

By the Corollary above then, 0 =  (x; y) = �1(x; y)� �2(x; y) for all (x; y) 2 R. Hence �1 = �2.


