
LECTURE 10

The Wave Equation and Laplace Transforms

Before discussing the application of Laplace transforms to the solution the Wave Equation, let me �rst state
and prove a simple proposition about the inverse Laplace transforms of exponential functions.

Proposition 10.1.
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Now consider the PDE/BVP

�tt � c2�xx = 0
�(x; 0) = h(x)
�t(x; 0) = p(x) :

(10.1)

Setting

�(x; s) =

Z 1
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e�st�(x; t)dt(10.2)

and taking the Laplace transform of the wave equation, and applying the identity

L [�tt(x; t)] = s2�(x; s)� s�(x; 0)� �t(x; 0) ;

we �nd that the equations (10.1) are equivalent to

s2�(x; t)� sh(x)� p(x)� c2L [�xx(x; t)] = 0 :(10.3)

Assuming that the (eventual) solution � is su�ciently well-behaved to allow us to reverse the order of partial
di�erentiation with respect to x and the Laplace transform with respect to t, we can rewrite (10.3) as

�xx(x; s)�
s2

c2
�(x; s) = g(x; s)(10.4)

38



10. THE WAVE EQUATION AND LAPLACE TRANSFORMS 39

where
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Fixing s and regarding (10.4) as an ODE with respect to the variable x, we obtain
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as solutions of the corresponding homogeneous problem. The Wronskian of y1 and y2 is
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According to the Method of Variation of Parameters, the general solution of
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(10.5)

In order to ensure good (bounded) behavior of �(x; s) as x!�1, we must take
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so (10.5) becomes
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Thus,
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(10.7)

Now as we have shown above
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So taking the inverse Laplace transform of (10.7) (and assuming this operation commutes with integration
over �), we get
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contribute to the �rst integral. And only the points � where
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