
LECTURE 9

Series Solutions of The Wave Equation

1.

Suppose we're given the following PDE/BVP (partial di�erential equation/boundary value problem);

�tt � c2�xx = f(x; t)
�(0; t) = 0
�(L; t) = 0
�(x; 0) = h(x)
�t(x; 0) = p(x)

(9.1)

corresponding to a string of length L, �xed at both ends, driven by a varying force f(x; t), with a given
initial shape h(x) and a given initial transverse velocity p(x).

We intend to solve this problem by means of an expansion of the form

�(x; t) =
1X
n=1

�n(t)�n(x) ;(9.2)

where �n(x) some suitably chosen complete set of functions for the interval (0; L). The criteria by which we
suitably choose the functions �n(x) is the same as in Chapter 2; we choose the �n(x) to be the eigenfunctions
of the Sturm-Liouville problem coming from separation of variables (for the homogeneous problem) and the
boundary conditions at time t = 0.

First, let's separate variables. Let

�(x; t) = F (x)G(t) :(9.3)

Inserting this expression into

�tt � c2�xx = 0

we get

F 00(t)G(x)� c2F (t)G00(x) = 0

or

F 00(t)

F (t)
= c2

G00(x)

G(x)
:

Thus, the function G(x) should satisfy

� = c2
G00(x)

G(x)

or

G00(x)�
�

c2
G(x) = 0 :(9.4)

In a Sturm-Louiville problem

d

dx
(p(x)y) + (q(x) + �(x)r(x))
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the functions p(x) and r(x) and the eigenvalues are required to be positive. Therefore, we require

�

�

c2
= �2

and rewrite (9.4) as

y00 + �2y = 0 :(9.5)

The eigenvalues and eigenfunctions corresponding to the boundary conditions

y(0) = 0
y(L) = 0

(9.6)

(the analogs of the boundary conditions at t = 0 in (9.1)), are

�n =
n�

L
(9.7)

and

�n(x) = sin
�n�x

L

�
:(9.8)

We thus set

�(x; t) =
1X
n=1

an(t) sin
�n�x

L

�
:(9.9)

Let

fn(t) = 2
L

R L
0 f(x; t) sin

�
n�x
L

�
dx

hn = 2
L

R L
0 h(x) sin

�
n�x
L

�
dx

pn = 2
L

R L
0 p(x; t) sin

�
n�x
L

�
dx

(9.10)

so that

f(x; t) =
P

1

n=1 fn(t) sin
�
n�x
L

�
h(x) =

P
1

n=1 hn sin
�
n�x
L

�
p(x) =

P
1

n=1 pn sin
�
n�x
L

�(9.11)

Plugging the expressions (9.11) into (9.1), and matching the coe�cients of sin
�
n�x
L

�
on all sides, we get

�00n(t) +
c2n2�2

L2 �(t) = fn(t)
�n(0) = hn
�0n(0) = pn :

(9.12)

The homogeneous equation corresponding to the ODE in (9.12) is

y00 +
c2n2�2

L2
y = 0 :(9.13)

The functions

y1(t) = cos
�
n�ct
L

�
y2(t) = sin

�
n�ct
L

�(9.14)

are two linearly independent solutions to (9.13) and so the general solution to the ODE in (9.12) is

�n(t) = y1(t)
h
An �

R t
0

y2(�)fn(�)
W [y1 ;y2](�)

d�
i
+ y2(t)

h
Bn +

R t
0

y1(�)fn(�)
W [y1;y2](�)

d�
i

= cos
�
n�ct
L

� �
An +

R t
0

sin(n�c�L )fn(�)
2n�c
L

d�

�

+sin
�
n�ct
L

� �
Bn �

R t
0

cos(n�c�L )fn(�)
2n�c
L

d�

� :
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In order to satisfy the initial conditions in (9.12) we must have

An = hn(9.15)

Bn =
L

n�c
pn(9.16)

Thus,

�n(t) = cos
�
n�ct
L

� �
hn +

R t
0

sin(n�c�L )fn(�)
2n�c
L

d�

�

+sin
�
n�ct
L

� �
L
�nc

pn �
R t
0

cos(n�c�L )fn(�)
2n�c
L

d�

�(9.17)

The solution to

�tt � c2�xx = f(x; t)
�(0; t) = 0
�(L; t) = 0
�(x; 0) = h(x)
�t(x; 0) = p(x)

(9.18)

is thus given by

�(x; t) =
1X
n=1

�n(t)�n(x) ;(9.19)

where

�n(x) = sin
�n�x

L

�
:(9.20)

and the coe�cients �n(t) are determined by

�n(t) = cos
�
n�ct
L

� �
hn +

R t
0

sin(n�c�L )fn(�)
2n�c
L

d�

�

+sin
�
n�ct
L

� �
L
�nc

pn �
R t
0

cos(n�c�L )fn(�)
2n�c
L

d�

�(9.21)

and

fn(t) =
2

L

Z L

0

f(x; t) sin
�n�x

L

�
dx(9.22)

hn =
2

L

Z L

0

h(x) sin
�n�x

L

�
dx(9.23)

pn =
2

L

Z L

0

p(x) sin
�n�x

L

�
dx :(9.24)


