
LECTURE 7

Distributions

1. De�nition and Examples of Distributions

Let C1o (Rn) denote the space of all C1 complex-valued functions on Rn with compact support. We regard
Co (Rn) as an in�nite dimensional vector space over over C .

The space D (Rn) of distributions on Rn is the space of all linear functionals on Co (Rn); that is to say,
an element T 2 D (Rn) is a (continuous) map from Co (Rn) to C such that

T (�f + �g) = �T (f) + �T (g) ; 8 �; � 2 C ; 8 f; g 2 Co (R
n) :(7.1)

I should admit at this point that I'm purposely avoiding the de�nition of the appropriate topology on
Co (Rn); nevertheless a standard (albeit technical) de�nition does exist.

Example 7.1. The prototypical example of a distribution is as follows.

Let g be any element of C1o (Rn) then we can associate with g the linear map Tg : C1o (Rn) ! C de�ned
by

Tg(f) =

Z
Rn

f(x)g(x) dnx :(7.2)

The integral on the right hand side is guaranteed to converge since the integrand is smooth and has only
compact support. The linearity of Tg follows from the corresponding property of convergent integrals:Z

Rn

g(x) (�f1(x) + �f2(x)) d
nx = �

Z
Rn

g(x)f1(x) d
nx+ �

Z
Rn

g(x)f2(x) d
nx :

In this way every element of C1o (Rn) can be regarded as an element of D (Rn).

But D (Rn) includes muchmore. If g is any piecewise continuous function (actually the analog of such objects
in the multivariable case) then the right hand side of (7.2) still makes sense (all we need for convergence is
for f to have compact support and this is guaranteed by the fact that we pick f from C1o (Rn)).

Example 7.2. Let xo 2 Rn. It is easy to see that the map Txo : C
1

o (Rn) ! C de�ned by

Txo(f) = f (xo)(7.3)

is a linear functional on C1o (Rn).

Similarly, let xo be any point of Rn and let i 2 f1; 2; 3; : : : ; ng. One easily veri�es that the map Txo;n :
C1o (Rn) ! C de�ned by

Txo;i(f) =
@f

@xi

����
xo

(7.4)

is also a (continuous) linear functional on C1o (Rn) and hence a distribution.
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2. The Delta Function

Consider the following 1-parameter family of functions �a : R! R.

�a(x) =

�
1
2a ; jxj < a

0 ; jxj � a :
(7.5)

So long as a 6= 0, this function is well de�ned and, in fact, piecewise continuous as a function of x for all
x 2 R.

Now let f(x) be a continuous function on the real line and consider the integralZ +1

�1

f(x)�a(x)dx =

Z a

�a

f(x)

2a
dx :(7.6)

This again is well de�ned for all a 6= 0, so we can ask if the limit

lim
a!0

Z +1

�1

f(x)�a(x)dx = lim
a!0

Z +a

�a

f(x)

2a
dx

exists. By the Mean Value Theorem, for any �nite a there exists an x1 2 (�a; a) such that

f(x1) =
1

2a

Z a

�a

f(x)dx :

When one takes the limit a! 0, x1 ! 0, and so

lim
a!0

Z +1

�1

f(x)�a(x)dx = lim
a!0

Z +a

�a

f(x)

2a
dx = f(0) :(7.7)

Writing

�(x) = lim
a!0

�a(x) ;(7.8)

we then have Z +1

�1

f(x)�(x)dx = f(0) ;(7.9)

or, more generally, Z +1

�1

f(x)�(x � xo)dx = f(xo) :(7.10)

(We simplymade a change of variables x ! x�xo in passing from (7.9) to (7.10).) The \function" �(x�xo)
so de�ned is called the Dirac delta function. Comparing (7.10) with (7.3) we see that the distribution de�ned
by integrating � (x� xo) against a function coincides with the distribution Txo on R.

However, recalling the original de�nition (1) of �a(x), it is clear that the de�nition (7.7)

lim
a!0

�a(x) =

� 1 if x = 0
0 if x 6= 0

(7.11)

does not really lead to any legitimate function. Of course, the limit (7.7) still makes sense. And so a more
accurate de�nition of the delta function might be as follows: Let T�a(x�xo) be the distribution de�ned by

T�a(x�xo)(f) =

Z
Rn

f(x)�a(x� xo) d
nx(7.12)

then the Dirac delta distribution T�(x�xo) is de�ned as

T�(x�xo) = lim
a!0

T�a(x�xo) :

Nevertheless, it is most common to regard the distributions, like the Dirac delta function, as some kind of
generalized function (in fact, in the early literature, that was precisely what distributions were called), and
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to represent their action on functions via (pseudo-) integral notation (e.g., the right hand side of (7.12).
rather than functional notation (resp., the left hand side of (7.12)..

I should remark that like C1 functions, distributions can also be di�erentiated; more precisely, if T 2 D (Rn)
then @iT is the distribution de�ned by

@iT (f) � �T
�
@f

@xi

�
; 8 f 2 C10 (Rn) :(7.13)

In the more common (and more abusive) notation in which one represents a distribution as integration
against some generalized function g(x), the above de�nition takes the formZ

Rn

�
@g

@xi
(x)

�
f(x) dnx � �

Z
Rn

g(x)

�
@f

@xi

�
dnx ;(7.14)

which can be (mis-) interpreted as the usual integration by parts formula (there is no boundary term since
by de�nition f 2 C10 (Rn) has only compact support).

I might also remark that it is possible to take the Laplace transform of the delta `function`: for the right
hand side of

L [� (x� xo)] (s) �
Z +1

�1

� (x� xo) e
�sxdx = e�sxo

is perfectly well-de�ned.

3. Other Representations of the Delta Function

Consider the expressions

�(x) = lim
n!1

np
�
e�n

2x2(7.15)

�(x) = lim
n!1

n

�

1

1 + n2x2
(7.16)

�(x) = lim
n!1

sin(nx)

�x
(7.17)

�(x) = lim
n!1

Z n

�n

eixtdt(7.18)

Each of these expressions behaves like function �(x) in (7.8) in the sense that

�(x) =

� 1 if x = 0
0 if x 6= 0

(7.19)

and Z +1

�1

f(x)�(x)dx = f(0)(7.20)

if f is continuous and the limits in (7.18) are taken only after the integration over x has been carried out.

Here is yet another example of a representation of the delta function. Recall that the solution to

@�

@t
� a2

@2�

@x2
= 0(7.21)

�(x; 0) = f(x)(7.22)

was found (using Laplace transform techniques) to be

�(x; t) =

Z +1

�1

f(�)g (x� �; t) d�(7.23)
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where

g (x; t) =
1

2a
p
�t

exp

�
� x2

4a2t

�
:(7.24)

One can interprete the integral on the right hand side of (7.23) in the following way: g (x� �; t) represents
the contribution to the total temperature at the point x and time t resulting from the propagation of the
heat from the point � at time t = 0. Indeed, integral kernels like g(x � �; t) that allow one to convert
boundary conditions directly to solutions are often called propagators.

Consider g(x; t) as a 1-parameter family of functions:�
gt(x) := g(x; t) j t 2 R+

	
:

One can easily verify that Z +1

�1

gt(x)dx = 1 ; 8 t 2 R+;

lim
t!0

g (x; t)) =

�
0 ; x 6= 0
1 ; x = 0

and that

lim
t!0

Z +1

�1

f(x)g(x; t)dx = f(0)

for any continuous function f . In other words,

lim
t!0

g(x; t) = �(x) :

This must be so since the original boundary condition on the solution (7.23) requires

f(x) = �(x; 0) = lim
t!0

Z +1

�1

f(�)g(x � �; t) d� :

Here is yet another way of representing the delta function. Suppose f�n(x)g is a complete orthonormal set
of functions on the interval (a; b). Set

�(x� y) =
1X
n=1

�n(x)�n(y) :

Then if

f(x) =
1X

m=1

am�m(x)

we have Z b

a

f(x)�(x � y)dx =
1X

m=1

1X
n=1

Z
am�m(x)�n(x)�n(y)dx(7.25)

=
1X

m=1

1X
n=1

am�m;n�n(y)(7.26)

=
1X

m=1

am�m(y)(7.27)

= f(y) :(7.28)

This representation will be very important latter on when we discuss Green's functions.

Homework: 2.6.2


