LECTURE 6

Laplace Transform Techniques

1. Review of Laplace Transform

THEOREM 6.1. Let f be a function on the half line $[0,\infty)$ with the following properties

- 1. $f, f', f'', \dots, f^{(n-1)}$ are continuous 2. $f^{(n)}$ is piecewise continuous
- 3. There exists constants K, a and M such that $|f(x)| \leq Ke^{at}$ for $t \geq M$.

Then the Laplace transforms

$$\mathcal{L}[f](s) = \int_{0}^{\infty} e^{-st} f(t) dt$$
$$\mathcal{L}[f'](s) = \int_{0}^{\infty} e^{-st} f'(t) dt$$
$$\vdots$$
$$\mathcal{L}[f^{(n)}](s) = \int_{0}^{\infty} e^{-st} f^{(n)}(t) dt$$

all exist for s > a, and moreover

$$\mathcal{L}\left[f^{(n)}\right](s) = s^{n} \mathcal{L}\left[f\right](s) - s^{n-1} f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0) \quad .$$

THEOREM 6.2. If $F(s) = \mathcal{L}[f](s)$ and $G(s) = \mathcal{L}[g](s)$ both exist for $s > a \ge 0$, then

$$\mathcal{L}^{-1}\left[F(s)G(s)\right] = \int_0^t f(t-\tau)g(\tau)d\tau = \int_0^t f(\tau)g(t-\tau)d\tau$$

THEOREM 6.3. If $F(s) = \mathcal{L}[f](s)$ then

$$f(t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} e^{st} F(s) ds$$

Here the constant γ is chosen so that all the singularities of the integrand occur to the left of $Re(s) = \gamma$. For t > 0, the contour may be closed by an infinite semicircle in the left half plane.

EXAMPLE 6.4. The following example shows how the Laplace transform can be used to construct a solution of the boundary value problem

 $\frac{\partial \phi}{\partial t} - a^2 \frac{\partial^2 \phi}{\partial r^2} = 0$ (6.1)

 $\begin{array}{rcl} \phi\left(x\,,0\right) &=& 0\\ \phi\left(0\,,t\right) &=& f\left(t\right) \end{array}$ (6.3)

in the region x > 0, t > 0.

Multiplying (6.1) by e^{-st} and integrating along t from 0 to ∞ we get

$$\mathcal{L}\left[\frac{\partial\phi}{\partial t}\right](s) - a^2 \mathcal{L}\left[\frac{\partial^2\phi}{\partial x^2}\right] = 0$$

 \mathbf{or}

$$s\mathcal{L}\left[\phi\right] - \phi\left(x,0
ight) - a^{2}\mathcal{L}\left[\frac{\partial^{2}\phi}{\partial x^{2}}\right] = 0$$

which becomes

(6.4)
$$\mathcal{L}\left[\frac{\partial^2 \phi}{\partial x^2}\right] - \frac{s}{a^2} \mathcal{L}[\phi] = 0$$

once we employ the initial condition $\phi(x, 0) = 0$.

If $\phi(x, t)$ is sufficiently well behaved,

$$\mathcal{L}\left[\frac{\partial^2 \phi}{\partial x^2}\right] = \frac{\partial^2}{\partial x^2} \mathcal{L}\left[\phi\right]$$

and (6.4) becomes

$$\frac{\partial^2 \Phi}{\partial x^2}(x,s) - \frac{s}{a^2} \Phi(x,s) = 0$$

Regarding this a second order linear differential equation with constant coefficients, we have as a general solution

(6.5)
$$\Phi(x,s) = A(s)e^{-\frac{\sqrt{s}}{a}x} + B(s)e^{\frac{\sqrt{s}}{a}x}$$

In order that our solution be a bounded function of t for all $x \ge 0$, we will demand that its Laplace transform go to zero as $s \to \infty$. This will require the coefficient B(s) = 0. To determine A(s), we note that the boundary condition

$$\phi(0,t) = f(t)$$

has as its Laplace transform

$$\Phi(0,s) = \mathcal{L}[f](s)$$

On the other hand, when we evaluate (6.5) at x = 0, we have

(6.7)
$$\Phi(0,s) = A(s)$$

Comparing this with (6.4) with (6.5) we see that the coefficient A(s) must be exactly $\mathcal{L}[f](s)$. Thus,

(6.8)
$$\Phi(x,s) = \mathcal{L}[f](s)e^{-\frac{\sqrt{s}}{a}x}$$

To find the solution $\phi(x,t)$ we now note that

(6.9)
$$e^{-\frac{\sqrt{s}}{a}x} = \mathcal{L}\left[\frac{x}{2\sqrt{\pi}at^{3/2}}e^{-\frac{x^2}{4a^2t}}\right]$$

and apply the Convolution Theorem to get

(6.10)
$$\phi(x,t) = \mathcal{L}^{-1}\left[\mathcal{L}[f]\mathcal{L}\left[\frac{x}{2\sqrt{\pi}at^{3/2}}e^{-\frac{x^2}{4a^2t}}\right]\right]$$

(6.11)
$$= \frac{x}{2a\sqrt{\pi}} \int_0^t f(t-\tau)\tau^{-3/2} e^{-\frac{x^2}{4a^2\tau}} d\tau$$

EXAMPLE 6.5. Let $\phi(x,t)$ satisfy the equation

(6.12)
$$\frac{\partial \phi}{\partial t} - a^2 \frac{\partial^2 \phi}{\partial x^2} = 0$$

(6.13)
$$\phi(x,0) = f(x)$$

for $-\infty < x < +\infty$, t > 0. As before, the Laplace transform of the heat equation (with respect to the time variable t) is

$$s\Phi(x,s) - \phi(x,0) - a^2 \frac{\partial^2}{\partial x^2} \Phi(x,s) = 0$$

 \mathbf{or}

$$s\Phi(x,s) - f(x) - a^2 \frac{\partial^2 \Phi}{\partial x^2} = 0$$

 or

(6.14)
$$\frac{\partial^2 \Phi}{\partial x^2} - \frac{s}{a^2} \Phi = -\frac{f(x)}{a^2}$$

The general solution to a ordinary differential equation of the form

$$y^{\prime\prime} - p(x)y^{\prime} + q(x)y = g(x)$$

is

(6.15)
$$y(x) = \left(A - \int^x \frac{y_2(\zeta)g(\zeta)}{W[y_1, y_2](\zeta)} d\zeta\right) y_1(x) + \left(B + \int^x \frac{y_1(\zeta)g(\zeta)}{W[y_1, y_2](\zeta)} d\zeta\right) y_1(x)$$

where $y_1(x)$ and $y_2(x)$ are any two linearly independent solutions of the corresponding homogeneous problem

$$y'' + p(x)y' + q(x)y = 0$$

(See Boyce and DiPrima, Section 3.6.2.) In the case at hand, we can take

$$(6.16) y_1(x) = e^{-\frac{\sqrt{s}}{a}x}$$

$$(6.17) y_2(x) = e^{\frac{\sqrt{s}}{a}x}$$

(6.18)
$$g(x) = -\frac{f(x)}{\sigma^2}$$

 and

$$W[y_1, y_2](x) = y_1 y_2' - y_1' y_2 = \frac{2\sqrt{s}}{a}$$

so we have

(6.19)
$$\Phi(x,s) = \left(A + \frac{1}{2a\sqrt{s}} \int_0^x e^{\frac{\sqrt{s}}{a}\zeta} f(\zeta)d\zeta\right) e^{-\frac{\sqrt{s}}{a}x}$$

(6.20)
$$+ \left(B - \frac{\sqrt{s}}{2a\sqrt{s}} \int_0^x e^{-\frac{\sqrt{s}}{a}\zeta} f(\zeta) d\zeta\right) e^{\frac{\sqrt{s}}{a}x}$$

In order to avoid uncontrolled growth in $\Phi(x,s)$ as $x \to +\infty$ we require

(6.21)
$$B = \frac{1}{2a\sqrt{s}} \int_0^\infty e^{-\frac{\sqrt{s}}{a}\zeta} f(\zeta) d\zeta$$

and similarly to control the behavior of $\Phi(x, s)$ as $x \to -\infty$, we require

(6.22)
$$A = -\frac{1}{2a\sqrt{s}} \int_0^{-\infty} e^{\frac{\sqrt{s}}{a}\zeta} f(\zeta) d\zeta$$

2. THE METHOD OF IMAGES

 \mathbf{So}

(6.23)
$$\Phi(x,s) = \left(-\frac{1}{2a\sqrt{s}}\int_0^{-\infty} e^{\frac{\sqrt{s}}{a}\zeta}f(\zeta)d\zeta + \frac{1}{2a\sqrt{s}}\int_0^x e^{\frac{\sqrt{s}}{a}x'}f(\zeta)d\zeta\right)e^{-\frac{\sqrt{s}}{a}x}$$

(6.24)
$$+ \left(\frac{1}{2a\sqrt{s}}\int_{0}^{\infty} e^{-\frac{\sqrt{s}}{a}\zeta}f(\zeta)d\zeta - \frac{1}{2a\sqrt{s}}\int_{0}^{\infty} e^{-\frac{\sqrt{s}}{a}\zeta}f(\zeta)d\zeta\right)e^{\frac{\sqrt{s}}{a}x}$$
(6.25)

(6.26)
$$= \left(-\frac{1}{2a\sqrt{s}}\int_{x}^{-\infty}e^{\frac{\sqrt{s}}{a}\zeta}f(\zeta)d\zeta\right)e^{-\frac{\sqrt{s}}{a}x} + \left(\frac{1}{2a\sqrt{s}}\int_{x}^{\infty}e^{-\frac{\sqrt{s}}{a}\zeta}f(\zeta)d\zeta\right)e^{\frac{\sqrt{s}}{a}x}$$
(6.27)

(6.28)
$$= \int_{-\infty}^{x} \frac{1}{2a\sqrt{s}} e^{\frac{\sqrt{s}}{a}(\zeta-x)} f(\zeta) d\zeta + \int_{x}^{+\infty} \frac{1}{2a\sqrt{s}} e^{\frac{\sqrt{s}}{a}(x-\zeta)} f(\zeta) d\zeta$$

(6.29)
$$= \int_{-\infty}^{x} \frac{1}{2a\sqrt{s}} e^{-\frac{\sqrt{s}}{a}|\zeta-x|} f(\zeta) d\zeta + \int_{x}^{+\infty} \frac{1}{2a\sqrt{s}} e^{-\frac{\sqrt{s}}{a}|\zeta-x|} f(\zeta) d\zeta$$

(6.30)
$$= \int_{-\infty}^{+\infty} \frac{1}{2a\sqrt{s}} e^{-\frac{\sqrt{s}}{a}|\zeta-x|} f(\zeta) d\zeta$$

The third step comes form the observation that

(6.31)
$$e^{\frac{\sqrt{s}}{a}(\zeta-x)} = e^{-\frac{\sqrt{s}}{a}|\zeta-x|} , \quad \forall \zeta \in (-\infty, x)$$

(6.32)
$$e^{\frac{\sqrt{s}}{a}(x-\zeta)} = e^{-\frac{\sqrt{s}}{a}|\zeta-x|} , \quad \forall \zeta \in (x,+\infty)$$

Now we employ the identity that

(6.33)
$$\mathcal{L}\left[\frac{1}{2a\sqrt{\pi}}\frac{1}{\sqrt{t}}e^{-\frac{|\zeta-x|^2}{4a^2t}}\right](s) = \frac{1}{2a\sqrt{s}}e^{-\frac{\sqrt{s}}{a}|\zeta-x|}$$

to write

$$J_{-\infty} \quad 2a\sqrt{\pi t}$$

Taking the inverse Laplace transform of both sides, we get

(6.37)
$$\phi(x,t) = \int_{-\infty}^{+\infty} \frac{1}{2a\sqrt{\pi t}} e^{-\frac{|\zeta-x|^2}{4a^2t}} f(\zeta) d\zeta \quad .$$

2. The Method of Images

Consider now the problem

(6.38)
$$\frac{\partial \phi}{\partial t} - a^2 \frac{\partial^2 \phi}{\partial x^2} = 0$$

$$\begin{array}{rcl} \partial t & \partial x^2 \\ (6.39) & & \phi(x,0) &= & f(x) \\ \end{array} \quad , \quad 0 < x < \infty$$

$$(6.40) \qquad \qquad \phi(0,t) = 0 \qquad 0 < t < \infty$$

$$(0.40) \qquad \qquad \phi(0,t) = 0 \qquad , \quad 0 < t < \infty$$

Note that in the statement of this problem we are given no information and asked no questions about the behavior of solutions as $x \to -\infty$. Yet in the preceding example, the assumption that $\Phi(x, s)$ was well behaved as $x \to \pm\infty$, was crucial to the determination of the constants of integration A(s) and B(s); which in turn allowed us to construct an explicit solution. Thus, the technique used in the preceding example can not be applied directly to the case at hand.

2. THE METHOD OF IMAGES

But a simple trick will suffice. We simply extend the domain of f(x) to the whole real line by defining

$$f(-x) \equiv -f(x)$$
 , $\forall x \in \mathbb{R}^+$.

The result of the preceding example then implies

(6.41)
$$\phi(x,t) = \int_{-\infty}^{+\infty} \frac{1}{2a\sqrt{\pi t}} e^{-\frac{|\zeta-x|^2}{4a^2t}} f(\zeta) d\zeta$$

will satisfy the differential equation

$$\frac{\partial \phi}{\partial t} - a^2 \frac{\partial^2 \phi}{\partial x^2} = 0$$

and the boundary condition

$$\phi(x,0) = f(x)$$

We now verify that this solution also satisfies the boundary condition

$$\phi(0,t) = 0 \quad , \quad 0 < t < +\infty \quad .$$

Setting x = 0 in (6.41) yields

(6.42)
$$\phi(0,t) = \int_{-\infty}^{+\infty} \frac{1}{2a\sqrt{\pi t}} e^{-\frac{\zeta^2}{4a^2t}} f(\zeta) d\zeta$$

Noting that the exponential function is a even function of ζ and that the function $f(\zeta)$ is defined to be an odd function of ζ , we conclude that the integrand in (6.42) is an odd function of ζ and so its integral between $-\infty$ and $+\infty$ vanishes. Thus,

$$\phi(0,t) = 0 \quad .$$

Homework: 2.2.2, 2.2.3, 2.2.5