
LECTURE 6

Laplace Transform Techniques

1. Review of Laplace Transform

Theorem 6.1. Let f be a function on the half line [0;1) with the following properties

1. f; f 0; f 00; : : : ; f (n�1) are continuous

2. f (n) is piecewise continuous

3. There exists constants K, a and M such that jf(x)j � Keat for t �M:

Then the Laplace transforms

L [f ] (s) =

Z 1

0

e�stf(t)dt

L [f 0] (s) =

Z 1

0

e�stf 0(t)dt

...

L
h
f (n)

i
(s) =

Z 1

0

e�stf (n)(t)dt

all exist for s > a, and moreover

L
h
f (n)

i
(s) = snL [f ] (s) � sn�1f(0) � � � � � sf (n�2)(0) � f (n�1)(0) :

Theorem 6.2. If F (s) = L [f ] (s) and G(s) = L[g](s) both exist for s > a � 0, then

L�1 [F (s)G(s)] =
Z t

0
f(t � � )g(� )d� =

Z t

0
f(� )g(t � � )d� :

Theorem 6.3. If F (s) = L[f ](s) then

f(t) =
1

2�i

Z +i1

�i1

estF (s)ds

Here the constant  is chosen so that all the singularities of the integrand occur to the left of Re(s) = .
For t > 0, the contour may be closed by an in�nite semicircle in the left half plane.

Example 6.4. The following example shows how the Laplace transform can be used to construct a solution
of the boundary value problem

@�

@t
� a2

@2�

@x2
= 0(6.1)

�(x; 0) = 0(6.2)

�(0; t) = f(t)(6.3)

in the region x > 0, t > 0.
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Multiplying (6.1) by e�st and integrating along t from 0 to 1 we get

L
�
@�

@t

�
(s) � a2L

�
@2�

@x2

�
= 0

or

sL [�]� �(x; 0)� a2L
�
@2�

@x2

�
= 0 ;

which becomes

L
�
@2�

@x2

�
� s

a2
L[�] = 0(6.4)

once we employ the initial condition �(x; 0) = 0.

If �(x; t) is su�ciently well behaved,

L
�
@2�

@x2

�
=

@2

@x2
L [�]

and (6.4) becomes

@2�

@x2
(x; s)� s

a2
�(x; s) = 0 :

Regarding this a second order linear di�erential equation with constant coe�cients, we have as a general
solution

�(x; s) = A(s)e�
p
s

a
x + B(s)e

p
s

a
x :(6.5)

In order that our solution be a bounded function of t for all x � 0, we will demand that its Laplace
transform go to zero as s!1. This will require the coe�cient B(s) = 0. To determine A(s), we note that
the boundary condition

�(0; t) = f(t)

has as its Laplace transform

�(0; s) = L[f ](s) :(6.6)

On the other hand, when we evaluate (6.5) at x = 0, we have

�(0; s) = A(s) :(6.7)

Comparing this with (6.4) with (6.5) we see that the coe�cient A(s) must be exactly L [f ] (s). Thus,

�(x; s) = L [f ] (s)e�
p
s

a
x :(6.8)

To �nd the solution �(x; t) we now note that

e�
p
s

a
x = L

�
x

2
p
�at3=2

e�
x
2

4a2t

�
(6.9)

and apply the Convolution Theorem to get

�(x; t) = L�1
�
L[f ]L

�
x

2
p
�at3=2

e�
x2

4a2t

��
(6.10)

=
x

2a
p
�

Z t

0
f(t � � )��3=2e�

x
2

4a2� d�(6.11)



1. REVIEW OF LAPLACE TRANSFORM 24

Example 6.5. Let �(x; t) satisfy the equation

@�

@t
� a2

@2�

@x2
= 0(6.12)

�(x; 0) = f(x)(6.13)

for �1 < x < +1, t > 0. As before, the Laplace transform of the heat equation (with respect to the time
variable t) is

s�(x; s)� �(x; 0)� a2
@2

@x2
�(x; s) = 0

or

s�(x; s)� f(x) � a2
@2�

@x2
= 0

or

@2�

@x2
� s

a2
� = �f(x)

a2
:(6.14)

The general solution to a ordinary di�erential equation of the form

y00 � p(x)y0 + q(x)y = g(x)

is

y(x) =

�
A�

Z x y2(�)g(�)

W [y1; y2](�)
d�

�
y1(x) +

�
B +

Z x y1(�)g(�)

W [y1; y2](�)
d�

�
y1(x)(6.15)

where y1(x) and y2(x) are any two linearly independent solutions of the corresponding homogeneous problem

y00 + p(x)y0 + q(x)y = 0 :

(See Boyce and DiPrima, Section 3.6.2.) In the case at hand, we can take

y1(x) = e�
p
s

a
x(6.16)

y2(x) = e
p
s

a
x(6.17)

g(x) =
�f(x)
a2

(6.18)

and

W [y1; y2](x) = y1y
0
2 � y01y2 =

2
p
s

a

so we have

�(x; s) =

�
A +

1

2a
p
s

Z x

0

e
p
s

a
�f(�)d�

�
e�

p
s

a
x(6.19)

+

�
B �

2a
p
s

Z x

0

e�
p
s

a
�f(�)d�

�
e
p
s

a
x(6.20)

In order to avoid uncontrolled growth in �(x; s) as x ! +1 we require

B =
1

2a
p
s

Z 1

0

e�
p
s

a
�f(�)d�(6.21)

and similarly to control the behavior of �(x; s) as x ! �1, we require

A = � 1

2a
p
s

Z �1

0

e
p
s

a
�f(�)d�(6.22)
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So

�(x; s) =

�
� 1

2a
p
s

Z �1

0

e
p
s

a
�f(�)d� +

1

2a
p
s

Z x

0

e
p
s

a
x0f(�)d�

�
e�

p
s

a
x(6.23)

+

�
1

2a
p
s

Z 1

0

e�
p
s

a
�f(�)d� � 1

2a
p
s

Z x

0

e�
p
s

a
�f(�)d�

�
e
p
s

a
x(6.24)

(6.25)

=

�
� 1

2a
p
s

Z �1

x

e
p
s

a
�f(�)d�

�
e�

p
s

a
x +

�
1

2a
p
s

Z 1

x

e�
p
s

a
�f(�)d�

�
e
p
s

a
x(6.26)

(6.27)

=

Z x

�1

1

2a
p
s
e
p
s

a
(��x)f(�)d� +

Z +1

x

1

2a
p
s
e
p
s

a
(x��)f(�)d�(6.28)

=

Z x

�1

1

2a
p
s
e�

p
s

a
j��xjf(�)d� +

Z +1

x

1

2a
p
s
e�

p
s

a
j��xjf(�)d�(6.29)

=

Z +1

�1

1

2a
p
s
e�

p
s

a
j��xjf(�)d�(6.30)

The third step comes form the observation that

e
p
s

a
(��x) = e�

p
s

a
j��xj ; 8 � 2 (�1; x)(6.31)

e
p
s

a
(x��) = e�

p
s

a
j��xj ; 8 � 2 (x;+1)(6.32)

Now we employ the identity that

L
�

1

2a
p
�

1p
t
e�

j��xj2
4a2t

�
(s) =

1

2a
p
s
e�

p
s

a
j��xj(6.33)

to write

L [�(x; t)] (s) � �(x; s)(6.34)

=

Z +1

�1

L
�

1

2a
p
�

1p
t
e�

j��xj2
4a2t

�
(s)f(�)d�(6.35)

= L
�Z +1

�1

1

2a
p
�t
e�

j��xj2
4a2t f(�)d�

�
(s)(6.36)

Taking the inverse Laplace transform of both sides, we get

�(x; t) =

Z +1

�1

1

2a
p
�t
e�

j��xj2
4a2t f(�)d� :(6.37)

2. The Method of Images

Consider now the problem

@�

@t
� a2

@2�

@x2
= 0(6.38)

�(x; 0) = f(x) ; 0 < x <1(6.39)

�(0; t) = 0 ; 0 < t <1 :(6.40)

Note that in the statement of this problem we are given no information and asked no questions about the
behavior of solutions as x ! �1. Yet in the preceding example, the assumption that �(x; s) was well
behaved as x!�1, was crucial to the determination of the constants of integration A(s) and B(s); which
in turn allowed us to construct an explicit solution. Thus, the technique used in the preceding example can
not be applied directly to the case at hand.
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But a simple trick will su�ce. We simply extend the domain of f(x) to the whole real line by de�ning

f(�x) � �f(x) ; 8 x 2 R+ :

The result of the preceding example then implies

�(x; t) =

Z +1

�1

1

2a
p
�t
e�

j��xj2
4a2t f(�)d�(6.41)

will satisfy the di�erential equation

@�

@t
� a2

@2�

@x2
= 0

and the boundary condition

�(x; 0) = f(x) :

We now verify that this solution also satis�es the boundary condition

�(0; t) = 0 ; 0 < t < +1 :

Setting x = 0 in (6.41) yields

�(0; t) =

Z +1

�1

1

2a
p
�t
e�

�2

4a2t f(�)d� :(6.42)

Noting that the exponential function is a even function of � and that the function f(�) is de�ned to be
an odd function of �, we conclude that the integrand in (6.42) is an odd function of � and so its integral
between �1 and +1 vanishes. Thus,

�(0; t) = 0 :

Homework: 2.2.2, 2.2.3, 2.2.5


