
LECTURE 1

Introduction

1. Rough Classi�cation of Partial Di�erential Equations

A partial di�erential equation is a equation relating a function � of n variables x1; : : : ; xn, its partial
derivatives, and the coordinates x = (x1; : : : ; xn); i.e., an equation of the form

F [x; �; @i�; @i@j�; : : : ; @i@j � � �@k�] (x) = 0(1.1)

The order of the highest derivative appearing in (1.1) is the order of the partial di�erential equation (1.1).
If the dependence of the functional F on � and its partial derivatives is linear, then the PDE (1.1) is said
to be linear (note, however, that a linear PDE is allowed to have a nonlinear dependence on x).
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is a nonlinear PDE of degree 1.

Example 1.2.
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is a linear PDE of degree 2.

By a solution of the PDE (1.1) in a region R � Rn, we mean an explicit function � : Rn! R such that

F [x;�; @i�; @i@j�; : : : ; @i@j � � �@k�] (x)

vanishes identically at each point x 2 R. Note that if (1.1) has degree d then � must be of class Cd (i.e.,
� and each of partial derivatives up to order d must be continuous throughout R).

2. Three Fundamental Examples of 2nd Order Linear PDEs:

2.1. Generic and Standard Forms of 2nd Order Linear PDEs. The generic form of a second
order linear PDE in two variables is

A(x; y)
@2�

@x2
+ B(x; y)

@2�

@x@y
+ C(x; y)

@2�

@y2
+D(x; y)

@�

@x
+ E(x; y)

@�

@y
+ F (x; y)� = G(x; y)(1.2)

We shall see latter that by a suitable change of coordinates x; y ! �(x; y); �(x; y) we can cast any PDE of
the form (1.2) into one of the following three (standard) forms.

1. Parabolic Equations:

@2�

@�2
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+ f2(�; �)

@�

@�
+ f3(�; �)� = g(�; �)(1.3)
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2. Elliptic Equations:
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+
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@�
+ f2(�; �)

@�

@�
+ f3(�; �)� = g(�; �)(1.4)

3. Hyperbolic Equations:

@2�

@�@�
+ f1(�; �)

@�

@�
+ f2(�; �)

@�

@�
+ f3(�; �)� = g(�; �)(1.5)

Associated to each of these standard forms are prototypical examples, each of which, remarkably, corresponds
to a fundamental PDE occuring in physical applications. During the next few weeks we shall discuss the
solutions or each of these equations extensively.

2.2. The Heat Equation.

@�

@t
� a2

@2�

@x2
= 0(1.6)

This equation arises in studies of heat 
ow. For example, if a 1-dimensional wire is heated at one end, then
the function �(x; t) describing the temperature of the wire at position x and time t will satisfy (1.6). The
heat equation is the prototypical example of a parabolic PDE.

2.3. Laplace's Equation.

@2�

@x2
+

@2�

@y2
= 0(1.7)

This equation arises in a variety of physical situations: the function �(x; y) might be interpretable as the
electric potential at a point (x; y) in the plane, or the steady state temperature of a point in the plane.
Laplace's equation is the prototypical example of an elliptic PDE.

2.4. The Wave Equation.

@2�

@t2
� a2

@2�

@x2
= 0(1.8)

This equation governs the propagation of waves in a medium, such as the vibrations of a taunt string,
pressure 
uctuations in a compressible 
uid, or electromagnetic waves. The wave equation is the prototypical
example of a hyperbolic PDE. The coordinate transformation that casts (1.8) into the form (1.5) is

� = x� ct

� = x+ ct

3. Boundary Conditions

In stark constrast to the theory of ordinary di�erential equations where boundary conditions play a rela-
tively innocuous role in the construction of solutions, the nature of the boundary conditions imposed on a
partial di�erential equation can have a dramatic e�ect on whether or not the PDE/BVP (partial di�erential
equation / boundary value problem) is solvable.

3.1. Cauchy Conditions. The speci�cation of the function and its normal derivative along the bound-
ary curve.

Cauchy boundary conditions are commonly applicable in dynamical situations (where the system is inter-
preted as evolving with respect to a time parameter t:
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3.2. Dirichlet Conditions. The speci�cation of the function on the boundary curve.

As an example of a PDE/BVP with Dirichlet boundary conditions, consider the problem of �nding the
equilibrium temperature distribution of a rectangular

sheet whose edges are maintained at some prescribed (but non-constant) temperature.

3.3. Neumann Conditions. The speci�cation of the normal derivative of the function along the
boundary curve.

As an example of a PDE/BVP with Neumann boundary conditions, consider the problem of determining
the electric potential inside a superconducting cylinder.

4. Simple Solutions of the Heat Equation - Separation of Variables

In order to get a feel for the general nature of partial di�erential equations, we shall now look for simple
solutions for the heat equation

@�

@t
= a2

@2�

@x2
:(1.9)

We shall construct solutions of this equation by presuming the existence of solutions of a particularly simple
(but su�ciently general) form. Our initial assumptions will be justi�ed by the fact that we obtain in this
manner lots of solutions.

Let us then suppose that there exist solutions of (1.9) of the form

�(x; t) = F (x)G(t)(1.10)

where F is a function of x alone and G is a function of t alone. Substituting this ansatz for � into (1.9)
yields

F (x)G0(t) = a2G(t)F 00(x)

or

G0(t)

G(t)
= a2

F 00(x)

F (x)
:(1.11)

Now this equation should hold for all x and t. However, the left hand side depends only on t while the right

hand side depends only on x. Consequently, if we vary t but keep x �xed, we must have G0(t)
G(t) equal to the

�xed number a2F
00(x)
F (x)

. Thus, G0(t)
G(t)

equals some constant; say C. Similarly, by varying x and keeping t �xed

we can conclude that F 00(x)
F (x) is a constant as well; say D. Equation (1.11) then becomes

C = a2D :

Thus, when we presume the existence of solutions of the form (1.10), the di�usion equation (1.9) is equivalent
to the following pair of ordinary di�erential equations

G0(t)

G(t)
= C(1.12)

F 00(x)

F (x)
=

C

a2
:(1.13)

Therefore, if we can construct solutions G and F of the ordinary di�erential equations (1.12) and (1.13), then
(1.10) will be a solution of the partial di�erential equation (1.9). Rewriting (1.12) and (1.13, respectively,
as

G0(t) �CG(t) = 0(1.14)
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F 00(x) �
C

a2
F (x) = 0(1.15)

We see that both of these ordinary di�erential equations are linear with constant coe�cients. The general
solution of (1.14) will be

G(t) = Goe
Ct

and the general solution of (1.15) will have the form

F (x) = F1e
�x + F2e

��x ; � =

r
C

a2
:

Thus, any function of the general form

�C(x; t) = Goe
Ct
�
F1e

�x + F2e
��x

�
� c1e

Ct+�x + c2e
Ct��x

will be solutions of (1.9). Note that there are 3 undetermined parameters here; C, c1 and c2. For �xed values
of � 6= 0, we obtain a two dimensional space of solutions, since �C;1(x; t) = eCt+�x and �C;2(x; t) = eCt��x

are linearly independent. However, if C0 6= C, then the functions f�C;1; �C;2; �C0;1; �C0;2g are all linearly
independent.

If we take the separation constant C = k2, with k real, we obtain

�k(x; t) = ek
2t
�
b1e

k

a
x + b2e

� k

a
x
�

:

Varying c we thus obtain two 1-parameter families of linear independent solutions whose magnitudes grow
exponentially in time:

�k;1(x) = ek
2te

kx

a k 2 R

�k;2(x) = ek
2te

�kx

a k 2 R

If we take C = ��2, with � real constant, we have

� =

r
��2

a2
= i

�

a

and so

��;1(x; t) = e��
2te

i�

a
x

��;2(x; t) = e��
2te

�i�

a
x

and

��(x; t) = c1e
��2te

i�

a
x + c2e

��2te
�i�

a
x

= e��
2t

�
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�
�x

a

�
+ ic1 sin

�
�x

a

�
+ c2 cos

�
�x

a

�
� ic2 sin

�
�x

a

��

= e��
2
t

�
a1 cos

�
�x

a

�
+ a2 sin

�
�x

a

��

In the second step we have used Euler's formula

ei� = cos(�) + i sin(�)

to replace the exponential functions e�i
�

a
x by sine and cosine functions:

a1 = c1 + c2

a2 = ic1 � ic2:

Varying � we obtain two more 1-parameter families of linearly independent solutions that decay exponen-
tially as t!1, and oscillate sinusoidally as one varies x.

��;1(x) = e�k
2t cos

�
kx
a

�
� 2 R(1.16)

��;2(x) = e�k
2t sin

�
�kx
a

�
� 2 R(1.17)
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In summary, the method of separation of variables (i.e., the ansatz �(x; t) = F (x)G(t)) produces four
1-parameter sets of linearly independent, real-valued solutions

�k;1(x) = ek
2
te

kx

a k 2 R(1.18)

�k;2(x) = ek
2te

�kx

a k 2 R(1.19)

��;1(x) = e�k
2t cos

�
kx

a

�
� 2 R(1.20)

��;2(x) = e�k
2t sin

�
�kx

a

�
� 2 R(1.21)

Given this plethora of linearly independent solutions, it is appropriate to ask under what additional con-
ditions can we expect to �nd a unique solution. Clearly, specifying the value of � at a single point will be
insu�cient. We shall see latter that in order to obtain a unique solution we will have to specify the values
of � and its partial derivatives at every point along some curve in order to completely determine a solution.


