Math 4513

Solutions to Homework 8
1. Write down the Richardson extrapolation for the derivative f/(z) that is accurate to order 8 in A.

e In lecture we derived
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and the higher Richardson extrapolations were given by the recursive formula.

4n h 1
¢n == 4n _ 1¢n—1 (5) - m¢n—1(h)

We need to compute ¢3(h).
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This result could also be obtained with the following Maple program

F[0] := (£(x+h) - £(x-h))/2;
for i from 0 to 2 do
F[i+1] := ((4~(i+1))#*subs(h=h/2,F[i]) - F[i])/(4"(i+1) -1);
od:
F[3];



2. Suppose

/a b f(x)d

is calculated numerically by interpolating the function f(x) at the points
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and then integrating the interpolation polynomial between a and b. Express the maximal error in terms of
a derivative of f, n, and the end points of integration ¢ and b. (Hint: Write down a change of variables
formula reduces the integral over [a, b] to an integral over [—1,1].)

o If P(z) is a degree n polynomial interpolation of a function f(z) then we have
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for some point &, € [a,b]. Thus, the error that occurs when we integrate P(z) in place of f(z) on

[a, b] will be
b
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In the case at hand, the interpolations nodes are the images of the zeros
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of Uy 41(t), the Chebyskev Polynomials of the Second Kind, by the linear mapping
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Thus,
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The change of variables formula for 1-dimensional integrals is
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and so
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In the last step we used the property that if the ¢; are the zeros of U,11(t), then
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3. Find a quadrature formula for the integral
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corresponding to the case where the function f(x) is interpolated at four points:
xs = a+ 2h, and 23 = a + 3h.
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xog = a, 1 = a + h,

e Let F(x) be the 4-point polynomial interpolation of f(z) with nodes g = a, 1 = a+h, 2 = a+2h,

and z3 = a + 3h. Recall that the Lagrange form of an interpolation polynomial is
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where the cardinal functions ¢;(xz) are given by
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We have
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where the constants A; are the integrals of the cardinal functions ¢; ().

Since equation (0.1) must be

exact whenever f(z) is a polynomial of degree less than or equal to n (because then the interpolation



polynomial must coincide with f(z)), we have takiing f(z) = =*, k =0,1,2,3,
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Solving this set of equations for Ay, A1, A2, and As yields
3
AO = gh
9
Al = gh
9
A2 = gh
3
A3 = gh
Thus,
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4. (a) Write a Maple program that applies the formula

b— A
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(take n, the number of subdivsions of [0, 2] equal to 20).

to calculate

e From the formal definition of the Riemann integral we have
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This formula leads to the following Maple code.

x —> evalf(exp(x~2));
= 0.0;

= 2.0;

= 20;

1 :=0.0;
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dx := (b-a)/n;

x = a + dx/2;

for i from 0 to n-1 do
I1 := I1 + f(x)#*dx;
X = x+dx;

od;

I1;

Output: I1 = 16.36221034

(b) Use the result of Problem 3 to formulate a numerical recipe for calculating

/a b fla) de

and then write a Maple program that computes

2 2
}/ e’ dx
0

(take n, the number of subdivsions of [0, 2] equal to 20).

e We have

/abf(x)dx - Tg[ﬁm Fz)de
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We shall use the results of Problem 3 to get fairly accurate approximation for the summands
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Setting
A
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we obtain from the result of Problem 3
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Thus,
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This formula leads to the following Maple code.

f :=x -> evalf(exp(x~2));
a := 0.0;

b :=2.0;

n := 20;

I1 := 0.0;

dx := (b-a)/n;

X = a

for i from 0 to n-1 do
DI1 := dx*(3*%f(x) + 9%f(x+dx/3) + 9%f(x+2*dx/3) + 3*f(x+dx))/24;
I1 := I1 + DI1;
X = x+dx;



od:
I1;

Output I = 16.45270135



