
MATH 4513 : HOMEWORK 4

1. If

L =

0
BB@

1 0 0 0
2 1 0 0
3 4 1 0
4 5 6 1

1
CCA ; b =

0
BB@

1
2
3
4

1
CCA

Write a program that �nds the solution of

Lx = b:
�

n := 4;

L := array(1..n,1..n);

b := array(1..n);

x := array(1..n);

L := [[1,0,0,0],[2,1,0,0],[3,4,1,0],[4,5,6,1]];

b := [1,2,3,4];

for k from 1 to n do

x[k] := (b[k] - add(L[k,s]*x[s],s=1..k-1))/L[k,k];

od;

print(x);

OUTPUT: x = [1,0,0,0]

2. If

U =

0
BB@

1 1 2 1
0 2 1 2
0 0 2 1
0 0 0 1

1
CCA ; b =

0
BB@

1
2
3
4

1
CCA

Write a program that �nds the solution of

Ux = b:
�

n := 4;

U := array(1..n,1..n);

b := array(1..n);

x := array(1..n);

U := [[1,1,2,1],[0,2,1,2],[0,0,2,1],[0,0,0,1]];

b := [1,2,3,4];

for k from 0 to (n-1) do

x[n-k] := (b[n-k] - add(U[n-k,n-s]*x[n-s],s=0..k-1))/U[n-k,n-k];

1

4 2

od;

print(x);

OUTPUT: x = [3/4, -11/4, -1/2, 4]

3. Write a program to �nd the LU factorization of the matrix

A =

0
BB@

1 1 1 1
2 4 4 4
1 5 8 8
2 4 10 14

1
CCA

assuming the lower triangular matrix L has 1's along its diagonal.
�

n := 4; # all matrices are nxn=4x4

A := array(1..n,1..n);

L := array(1..n,1..n);

U := array(1..n,1..n);

A := [[1,1,1,1],[2,4,4,4],[1,5,8,8],[2,4,10,14]];

for k from 1 to n do # calculate kth column of L and kth row of U

for s from 1 to k-1 do

L[s,k] := 0; # so that L is lower triangular

U[k,s] := 0; # so that U is upper triangular

od;

L[k,k] := 1; # by convention

k1 := k-1;

calculate the kth element of kth row of U

U[k,k] := A[k,k] - sum(L[k,j0]*U[j0,k],j0=1..k1);

for t from k+1 to n do

calculate remaining elements in kth column of L

L[t,k] := (A[t,k] - add(L[t,j1]*U[j1,k],j1=1..k1))/U[k,k];

calculate remaining elements in kth row of U

U[k,t] := A[k,t] - add(L[k,j2]*U[j2,t],j2=1..k1);

od;

od;

print(L);

print(U);

OUTPUT :

L =

0
BB@

1 0 0 0
2 1 0 0
1 2 1 0
2 1 2 1

1
CCA ; U =

0
BB@

1 1 1 1
0 2 2 2
0 0 3 3
0 0 0 4

1
CCA

4 3

4. Write a program to �nd the LU factorization of the matrix

A =

0
BB@

1 1 1 1
2 4 4 4
1 5 8 8
2 4 10 14

1
CCA

assuming the upper triangular matrix U has 1's along its diagonal.
�

n := 4; # all matrices are nxn=4x4

A := array(1..n,1..n);

L := array(1..n,1..n);

U := array(1..n,1..n);

A := [[1,1,1,1],[2,4,4,4],[1,5,8,8], [2,4,10,14]];

for k from 1 to n do # calculate kth column of L and kth row of U

for s from 1 to k-1 do

L[s,k] := 0; # so that L is lower triangular

U[k,s] := 0; # so that U is upper triangular

od;

U[k,k] := 1; # by convention

k1 := k-1;

calculate the kth element of kth row of L

L[k,k] := A[k,k] - sum(L[k,j0]*U[j0,k],j0=1..k1);

for t from k+1 to n do

calculate remaining elements in kth column of L

L[t,k] := (A[t,k] - add(L[t,j1]*U[j1,k],j1=1..k1));

calculate remaining elements in kth row of U

U[k,t] := A[k,t] - add(L[k,j2]*U[j2,t],j2=1..k1)/L[k,k];

od;

od;

print(L);

print(U);

OUTPUT:

L =

0
BB@

1 0 0 0
2 2 0 0
1 4 �5 0
2 2 2 �76=5

1
CCA ; U =

0
BB@

1 1 1 1
0 1 3 3
0 0 53=5
0 0 0 1

1
CCA

5. Find the 1� 4 matrix x that solves0
BB@

1 1 1 1
2 4 4 4
1 5 8 8
2 4 10 14

1
CCA

0
BB@

x1
x2
x3
x4

1
CCA =

0
BB@

1
2
3
4

1
CCA

�

n := 4; # all matrices are nxn=4x4

A := array(1..n,1..n);

L := array(1..n,1..n);

4 4

U := array(1..n,1..n);

A := [[1,1,1,1],[2,4,4,4],[1,5,8,8],[2,4,10,14]];

for k from 1 to n do # calculate kth column of L and kth row of U

for s from 1 to k-1 do

L[s,k] := 0; # so that L is lower triangular

U[k,s] := 0; # so that U is upper triangular

od:

L[k,k] := 1; # by convention

k1 := k-1;

calculate the kth element of kth row of U

U[k,k] := A[k,k] - add(L[k,j0]*U[j0,k],j0=1..k1);

for t from k+1 to n do

calculate remaining elements in kth column of L

L[t,k] := (A[t,k] - add(L[t,j]*U[j,k],j=1..k1))/U[k,k];

calculate remaining elements in kth row of U

U[k,t] := A[k,t] - add(L[k,j]*U[j,t],j=1..k1);

od:

od:

print(`L = `, L);

print(`U = `, U);

now we solve Lz = b for z

b := array(1..n);

z := array(1..n);

b := [1,2,3,4];

for k from 1 to n do

k1 := k-1;

z[k] := (b[k] - add(L[k,s]*z[s],s=1..k1))/L[k,k];

od:

print(`z = `, z);

now we solve Ux = z for x

x := array(1..n);

for k from 0 to (n-1) do

k1 := k-1;

x[n-k] := (z[n-k] - add(U[n-k,n-s]*x[n-s],s=0..k1))/U[n-k,n-k];

od:

print(`x = `, x);

OUTPUT:

L =

0
BB@

1 0 0 0
2 1 0 0
1 2 1 0
2 1 2 1

1
CCA ; U =

0
BB@

1 1 1 1
0 2 2 2
0 0 3 3
0 0 0 4

1
CCA

z = [1; 0; 2;�2]

x = [1;�2=3; 7=6;�1=2]

4 5

