
LECTURE 25

Fast Fourier Transforms

1. Fourier Transforms

Recall that polynomial interpolations (Chapter 6) were introduced as a means of constructing formulae for
functions that best replicate given sets of data. Of course, such interpolations only only produce polynomial
functions as output, and so might not be well-suited for all sets of data. This is particularly true for data
that varies very rapidly.

For consider the function

f(t) = sin(2093t)

This function function (which by the way represents the oscillations of a piano string tuned to middle C),
requires a polynomial of degree at least 4188 to accommodate all the sign 
ips on the interval between 1
and 2�. Such a high degree polynomial is totally unsuited for subsequent numerical computations because
the 
oating point errors for the leading terms will quickly wash out the lower order terms.

To handle such rapidly varying functions, it makes sense to use as a set of prototypes, a set of functions
that have also have the capacity to vary rapidly. The following theorem tells us that trignometric functions
can be used as a basis for the expansion of functions that are continuous on the interval [0; L].

Theorem 25.1. Let f(t) and f 0(t) be continuous on the interval [0; L]. Then if we de�ne coe�cients
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for all t 2 [0; 2�]

We call refer to the right hand side of (25.3) as the Fourier expansion of f(t). We shall use this theorem
not so much as a means of computing a given function f(t), but rather as a statement about what the
function matching a given set of data might must look like. Just as the goal of polynomial interpolation
was to �nd a suitable set of coe�cients An so that a data table fti; fig could be replicated by evaluating
the polynomial
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at the node points ti; our goal here will be to determind a suitable set of Fourier coe�cients fan; bng so
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replicates a given set of data.

It is both common and convenient to use the Euler formulae

cos (�) =
ei� + e�i�

2

sin(�) =
ei� � e�i�

2i

to replace the expansion (25.3) in terms of trignometric functions with an expansion in terms of complex
exponential functions

f(t) =
NX
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Fk exp

�
i2�kt

L

�

where
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2 ; k = 0; 1; 2; 3 : : :
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2 ; k = �1;�2;�3; : : :

or alternatively
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L
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In the next section I shall describe a means of computing a suitable collection of coe�cients fk from a given
data set.

2. Digital Signal Processing

2.1. Notation. Let h(t) be a functions sampled every � seconds and let hn denote the nth sampling:
viz.,

hn = h(n� ) ; n = : : : ;�3;�2;�1; 0; 1; 2;3; : : :(25.4)

Definition 25.2. The sampling rate is the reciprical of the time interval � .

Definition 25.3. The Nyquist frequency fc is one half the sampling rate:

fc =
1

2�

Note that the period of a signal at the Nyquist frequency of a sampling is exactly 2� .

Remark 25.4. Note that two functions exp (2�if1t) and exp (2�if2t) give exactly the same sampling data
if and only if the di�erence between f1 and f2 is a multiple of 1=� which is just the width of the frequency
range between �fc and fc. For

exp (2�if2tn) = exp
�
2�i

�
f1 +

m

�

�
(n� )

�
= exp (2�i (f1)n� + 2mn�i)

= exp (2�i (f1)n� ) exp (2nmi�)

= exp (2�i (f1)n� )

This phenomenon is called aliasing. Accordingly, if sample data at a samplling rate is 1
� we will not be able

to distinguish frequency components f with higher than f > 2fc.

Remark 25.5. For a sampling rate of 8,000 samples per second, 1=8000 = 1:25� 10�4

� = 1=8000 = 1:25� 10�4sec

and the critical frequency is 4000 Hz. (We note that C7 � 4186 Hz).
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2.2. Discrete Fourier Transform. Suppose we sample the values of a function h(t), N consecutive
times, starting at time t = 0 at intervals of � seconds:

hk = h(tk)

tk = k� ; k = 0; 1; 2; 3; : : : ; N � 1

To make things simplest we shall suppose that N is even. We shall also denote the total time elapsed during
the sampling by

T = (N � 1)� :

Our goal here is to determine what the frequency spectrum of this function looks like from the sampled
data. If f(t) were known at all values of t (not just the discrete set ftkg) we would use the Fourier transform

H[f ] =

Z +1

�1

h(t)e2�iftdt(25.5)

to determine the amplitude of the frequency component f: In the case at hand, we have only N data points,
and so we can expect, at most, N independent numbers as output. To extract from (25.5) a reasonable
estimate for the amplitude of a component with frequency f � �, we must �rst make some simplifying
assumption about the nature of h(t) so that the integral on the right hand side can be approximated by a
�nite sum. Thus we assume either

� The support of the function h(t) is completely contained within the interval between [0; T ].
� If function h(t) is de�ned for all t then at least the values of h(t) within the interval [0; T ] are typical
of what h(t) looks like at other times.

In �rst case, the �rst step in reducing the formula to a �nite sum is to use one of the assumptions above to
replace the improper integral in (25.5) by a integral over a �nite length of time

H[f ] =

Z +1

�1

h(t)e2�iftdt =

Z T

0

h(t)e2�iftdt

We then subdivide the interval [0; T ] into N � 1 subintervals and approximate the integral on the far right
by a �nite Riemann sum

H[f ] �
N�1X
k=0

h(tk)e
2�iftk� = �

N�1X
k=0

hke
2�ifk�(25.6)

For the particular frequencies

fn �
n

N�
; n = �

N

2
; : : : ;

N

2
(25.7)

the sum on the far right reduces to

H[fn] = �

N�1X
k=0

hke
2�i( n

N�
)k� = �

N�1X
k=0

hke
2�ink=N

Thus, we obtain

Hn � H (fn) = �

N�1X
k=0

hke
2�ink=N(25.8)

as a discrete approximation to the Fourier transform and we interpreted the left hand side as the amplitude
of the frequency component fn.
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On the other hand, it would seem that if we try to repeat this analysis using instead the second assumption
in this same manner that we will be o� by an in�nite scaling factor becauseZ +1

�1

h(t)e2�iftdt = � � �+

Z Ti

Ti��

h(t)e2�iftdtdt+

Z Tf

Ti
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Ti
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Z Tf

Ti

h(t)e2�iftdtdt+ � � �

and, indeed, this same formula shows that the original integral can't convery converge either. But actually
in applying the second hypothesis, one should really be starting from the formulae

h(t) =
1X
n=0

1

N�
Hne

2�in(t�Ti)
M�(25.9)

Hn =

Z Ti+N�

Ti

h(t)e
2�in(t�Ti )

N� dt(25.10)

coming from an expansion of h(t) on the interval (Ti; Ti + N� ) = (Ti; Tf + � ) in terms of the orthogonal
basis functions

en(t) = e
2�in(t�Ti)

N�

(and where the underlying assumption is that h(Tf+� ) = h(Ti)). Ignoring the overall phase factor e
2�iTi=N�

(or to the same e�ect setting Ti = 0) and setting

fn =
n

N�
(25.11)

we write

Hn =

Z N�

0

h(t)e
2�ifnt
N�

tdt

�

N�1X
k=0

h(tk)e
2�ifntk
N� �

= �

N�1X
k=0

hke
2�ink
N

which is an expression of exactly the same form as (25.8). However, there formulas do not quite say the
same thing; in particular, the formula (25.10) is a priori valid for n 2Z. However, when we approximate
the Riemann integral by a �nite Riemann sum, we are e�ectively making an assumption about the total
contribution of high frequency components; in particular, the Nyquist frequency components fn; with
n = N

2 ; can hardly be expected to be nearly constant within time interval � used of the Riemann sum. The
interpretability of the Hn in either case requires an assumption about the attenuation of the high frequency
components of the original sampling. Basically, we assume that jfnj < fc =

1
2�
:

We thus de�ne the discrete Fourier transform of a given set of sample values fh0; h1; : : : ; hN�1g as the
complex number Hn computed via the formula

Hn =
N�1X
k=0

hke
2�ink
N(25.12)

Note that this formula for discrete Fourier transform is periodic in n with period N . Therefore, H�n =
HN�n. With this conversion in mind, one generally lets the indices n in (25.12) run from 0 to N�1, just like
the indices of the original sample. In this way the mapping of the N numbers hk into the N numbers Hn is
manifest. However, when this convention is followed you must remember that 0 frequency corresponds to
values n = 0, that positive frequencies correspond to the values 1 � n � N

2 �1, that the negative frequencies

correspond to the values N
2 + 1 � n � N � 1 and that the value n = N

2 corresponds to both f = fc and
f = �fc.
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3. The Fast Fourier Transform

Note that the discrete Fourier transform (25.12) is a sum of the form

Hn =
N�1X
k=0

hk(z
n)k

where

z = e
2�i
N


