LECTURE 21

Runge-Kutta Methods

In the preceding lecture we discussed the Euler method; a fairly simple iterative algorithm for determining
the solution of an intial value problem

(21.1) v =F(t,x) , x(t) =x0.

dt
The key idea was to interprete the F(xz,t) as the slope m of the best straight line fit to the graph of
a solution at the point (¢,#). Knowing the slope of the solution curve at (tg,2y) we could get to an-
other (approximate) point on the solution curve by following the best straight-line-fit to a point (¢1,2;) =
(to + At,zg + moAt), where mg = F(tg, z0). And then we could repeat this process to find a third point
(t2,2) = (t1 + At, 21 + myAt), and so on. Tterating this process n times gives us a set of n 4 1 values

z; = z (t;) for an approximate solution on the interval [to,tg + nAt].

Now recall from our discussion of the numerical procedures for calculating derivatives that the formal
definition

de . x(t+h)—x(t)
P h
does actually provide the most accurate numerical procedure for computing derivatives. For
de z(t+h)—2z(t)
—=———-40(h
dt h +O(h)
but a more accurate formula would be
dx 4 1
— = — (2(t+ h/2) —2(t — h/2)) — — (z(t + h) — 2(t R
O el 4+ h/2) — (e = /2)) — o (2l +) — () + O (1)

and even more accurate formulas were possible using Richardson Extrapolations of higher order.

In a similar vein, we shall now seek to improve on the Euler method. Let us begin with the Taylor series

for x(t + h):

h? h3
r(t+h)==z(t)+ ha'(t) + 71‘”(15) + Fl‘/”(t) +O(h*)
From the differential equation we have
gty = F
'ty = Fi+ F,F
l‘///(t) = Ftt+thF+(Fxt+FxxF)F+(Ft+FxF)Fx
And so the Taylor series for #(t + h) can be written
h2
(21.2) z(t+h) = z()+hF(t,z)+ 5 (Fy(t,) + Fp(t,2)F(t,) + O(h®)
1 1
(21.3) = z(t)+ th(t,)+ §h (F(t,x)+ hF(t,2) + hF(t,2)Fa(t, h)) + O(h?)
Now

F(t+h,x+hF(L,h) = F(t,)+ hF(t,z) + Fo(t, h) (RF (1, b)) + O(h?)

1

21. RUNGE-KUTTA METHODS 2

and so we can rewrite (?7) as

x(t+h)=2(t) + EF(t, z) + hp (t+h,x+hF(t2))+ 0O (h?)

2 2
or
1
(21.4) z(t+h)==z()+ §(F1—|—F2)
where
(21.5) = hF(t,»)
(21.6) Fy = AP (t+ha+F)

We thus arrive at the following algorithm for computing a solution to the intial value problem (21.1):

1. Partition the solution interval [a, b] into n subintervals:

bh—
At = ¢
n
ty = a-+ kAt
2. Set g equal to #(a) and then for k& from 0 to n — 1 calculate
Fl,k = AtF(tk, l‘k)
Fzyk = AtF (tk + Atz + AtFlyk)
1
Tpyr = zp+ 3 (Fig+ Fox)

This method is known as Heun’s method or the second order Runge-Kutta method.

Higher order Runge-Kutta methods are also possible; however, they are very tedius to derive. Here is the
formula for the classical fourth-order Runge-Kutta method:

1
z(t+h)==z()+ 6 (P14 2P+ 2F5 4+ Fy)

where
F1 = hF(t,l‘)
2 2
2 2
Fy = hF(t+hx+ F3)

Below is a Maple program that implements the fourth order Runge-Kutta method to solve

dx z? 4+ ¢2
(21.7) w9 , x(l)y=1

on the interval [1,2].

F :

(x,t) > - (x72 +t72)/(2*x*t) ;
n := 100;
t[0] := 1.0;
x[0] := 1.0;
h :=1.0/n
for i from 0 to n-1 do
F1 := evalf(h*F(t[i],x[i]));

1. ERROR ANALYSIS FOR THE RUNGE-KUTTA METHOD 3

F2 :
F3 :

evalf (h*F(t[i]l+h/2,x[1i]+F1/2));
evalf (h*F(t[i] +h/2,x[i]+F2/2));
F4 := evalf(h*F(t[il+h,x[i]1+F3));
t[i+1] := t[i] +h;
x[i+1] x[i] +(F1 +2*F2+2*F3+F4)/6;
od:

The exact solution to (21.7) is

1. Error Analysis for the Runge-Kutta Method

Recall from the preceding lecture the formula underlying the fourth order Runge-Kutta Method: if #(¢) is
a solution to

dx
then
1
where
Fi = hf(to,xo0)
1 1
F2 = hf t0—|——h,l‘0—|——F1
2 2
1 1
F3 = hf t0—|——h,l‘0—|——F2
2 2
F4 = hf(t0+h,l‘0—|—F3)

Thus, the local truncation error (the error induced for each successive stage of the iterated algorithm) will

behave like
err = Ch®

for some constant C'. Here (' is a number independent of A, but dependent on ¢y and the fourth derivative
of the exact solution () at ¢y (the constant factor in the error term corresponding to truncating the Taylor
series for #(tg + h) about ¢y at order h*. To estimate Ch® we shall assume that the constant €' does not
change much as ¢ varies from g to ¢y + h.

Let u be the approximate solution to Z(¢) at ¢y + h obtained by carrying out a one-step fourth order
Runge-Kutta approximation:

F(t) = u+ Ch®

Let v be the approximate solution to #(t) at tg + h obtained by carrying out a two-step fourth order
Runge-Kutta approximation (with step sizes of %h)

sw=rac(l)

Substracting these two equations we obtain

0:u—v—|—C’(1—2_4)h5

1. ERROR ANALYSIS FOR THE RUNGE-KUTTA METHOD 4

or
Uu—v

1= h?

local truncation error = C'h°> = ANU—V

In a computer program that uses a Runge-Kutta method, this local truncation error can be easily monitored,
by occasionally computing |u — v| as the program runs through its iterative loop. Indeed, if this error rises
above a given threshold, one can readjust the step size h on the fly to restore a tolerable degree of accuracy.
Programs that uses algorithms of this type are known as adaptive Runge-Kutta methods.

