
LECTURE 21

Runge-Kutta Methods

In the preceding lecture we discussed the Euler method; a fairly simple iterative algorithm for determining
the solution of an intial value problem

dx

dt
= F (t; x) ; x(t0) = x0 :(21.1)

The key idea was to interprete the F (x; t) as the slope m of the best straight line �t to the graph of
a solution at the point (t; x). Knowing the slope of the solution curve at (t0; x0) we could get to an-
other (approximate) point on the solution curve by following the best straight-line-�t to a point (t1; x1) =
(t0 +�t; x0 +m0�t), where m0 = F (t0; x0). And then we could repeat this process to �nd a third point
(t2; x2) = (t1 +�t; x1+m1�t), and so on. Iterating this process n times gives us a set of n + 1 values
xi = x (ti) for an approximate solution on the interval [t0; t0 + n�t].

Now recall from our discussion of the numerical procedures for calculating derivatives that the formal
de�nition

dx

dt
= lim

h!0

x(t+ h)� x(t)

h

does actually provide the most accurate numerical procedure for computing derivatives. For

dx

dt
=

x(t+ h)� x(t)

h
+ O(h)

but a more accurate formula would be

dx

dt
=

4

3h
(x(t+ h=2)� x(t� h=2))�

1

6h
(x(t+ h)� x(t)) +O

�
h4
�

and even more accurate formulas were possible using Richardson Extrapolations of higher order.

In a similar vein, we shall now seek to improve on the Euler method. Let us begin with the Taylor series
for x(t+ h):

x(t+ h) = x(t) + hx0(t) +
h2

2
x00(t) +

h3

6
x000(t) +O(h4)

From the di�erential equation we have

x0(t) = F

x00(t) = Ft + FxF

x000(t) = Ftt + FtxF + (Fxt + FxxF )F + (Ft + FxF )Fx

And so the Taylor series for x(t+ h) can be written

x(t+ h) = x(t) + hF (t; x) +
h2

2
(Ft(t; x) + Fx(t; x)F (t; x)) +O(h3)(21.2)

= x(t) +
1

2
hF (t; x) +

1

2
h (F (t; x) + hFt(t; x) + hF (t; x)Fx(t; h)) + O(h3)(21.3)

Now

F (t+ h; x+ hF (t; h)) = F (t; x) + hFt(t; x) + Fx(t; h) (hF (t; h)) + O(h2)

1



21. RUNGE-KUTTA METHODS 2

and so we can rewrite (??) as

x(t+ h) = x(t) +
h

2
F (t; x) +

h

2
F (t+ h; x+ hF (t; x)) +O

�
h3
�

or

x(t+ h) = x(t) +
1

2
(F1 + F2)(21.4)

where

F1 = hF (t; x)(21.5)

F2 = hF (t+ h; x+ F1)(21.6)

We thus arrive at the following algorithm for computing a solution to the intial value problem (21.1):

1. Partition the solution interval [a; b] into n subintervals:

�t =
b� a

n
tk = a + k�t

2. Set x0 equal to x(a) and then for k from 0 to n� 1 calculate

F1;k = �tF (tk; xk)

F2;k = �tF (tk +�t; xk +�tF1;k)

xk+1 = xk +
1

2
(F1;k + F2;k)

This method is known as Heun's method or the second order Runge-Kutta method.

Higher order Runge-Kutta methods are also possible; however, they are very tedius to derive. Here is the
formula for the classical fourth-order Runge-Kutta method:

x(t+ h) = x(t) +
1

6
(F1 + 2F2 + 2F3 + F4)

where

F1 = hF (t; x)

F2 = hF

�
t +

1

2
h; x+

1

2
F1

�

F3 = hF

�
t +

1

2
h; x+

1

2
F2

�
F4 = hF (t+ h; x+ F3)

Below is a Maple program that implements the fourth order Runge-Kutta method to solve

dx

dt
= �

x2 + t2

2xt
; x(1) = 1(21.7)

on the interval [1; 2].

F := (x,t) -> - (x^2 +t^2)/(2*x*t) ;

n := 100;

t[0] := 1.0;

x[0] := 1.0;

h := 1.0/n

for i from 0 to n-1 do

F1 := evalf(h*F(t[i],x[i]));



1. ERROR ANALYSIS FOR THE RUNGE-KUTTA METHOD 3

F2 := evalf(h*F(t[i]+h/2,x[i]+F1/2));

F3 := evalf(h*F(t[i] +h/2,x[i]+F2/2));

F4 := evalf(h*F(t[i]+h,x[i]+F3));

t[i+1] := t[i] +h;

x[i+1] := x[i] +(F1 +2*F2+2*F3+F4)/6;

od:

The exact solution to (21.7) is

x(t) =

s
1

3

�
4

t
� t3

�

1. Error Analysis for the Runge-Kutta Method

Recall from the preceding lecture the formula underlying the fourth order Runge-Kutta Method: if x(t) is
a solution to

dx

dt
= f(t; x)

then

x(t0 + h) = x(t0) +
1

6
(F1 + 2F2 + 2F3 + F4) + O(h5)

where

F1 = hf (t0; x0)

F2 = hf

�
t0 +

1

2
h; x0 +

1

2
F1

�

F3 = hf

�
t0 +

1

2
h; x0 +

1

2
F2

�
F4 = hf (t0 + h; x0 + F3)

Thus, the local truncation error (the error induced for each successive stage of the iterated algorithm) will
behave like

err = Ch5

for some constant C. Here C is a number independent of h, but dependent on t0 and the fourth derivative
of the exact solution ~x(t) at t0 (the constant factor in the error term corresponding to truncating the Taylor
series for x(t0 + h) about t0 at order h4. To estimate Ch5 we shall assume that the constant C does not
change much as t varies from t0 to t0 + h.

Let u be the approximate solution to ~x(t) at t0 + h obtained by carrying out a one-step fourth order
Runge-Kutta approximation:

~x(t) = u+ Ch5

Let v be the approximate solution to ~x(t) at t0 + h obtained by carrying out a two-step fourth order
Runge-Kutta approximation (with step sizes of 1

2
h)

~x(t) = v + 2C

�
h

2

�5
Substracting these two equations we obtain

0 = u� v +C
�
1� 2�4

�
h5



1. ERROR ANALYSIS FOR THE RUNGE-KUTTA METHOD 4

or

local truncation error = Ch5 =
u� v

1� h�4
� u� v

In a computer program that uses a Runge-Kutta method, this local truncation error can be easily monitored,
by occasionally computing ju� vj as the program runs through its iterative loop. Indeed, if this error rises
above a given threshold, one can readjust the step size h on the y to restore a tolerable degree of accuracy.
Programs that uses algorithms of this type are known as adaptive Runge-Kutta methods.


