
LECTURE 19

Numerical Integration

Recall from Calculus I that a de�nite integral Z b

a

f(x)dx

is generally thought of as representing the area under the graph of f(x) between the points x = a and
x = b, even though this is actually only true when f(x) is non-negative on [a; b]. However, the geometric
interpretation of the derivative at least makes its the formal de�nitionZ b

a

f(x)dx � lim
N!1

NX
i=0

f(~xi)�x ; �x =
b � a

N
; ~xi 2 [a+ i�x; a+ (i+ 1)�x]

a little more palatable: for one thinks of the sum on the right hand side as a sum over the areas of a set of
in�nitesimal rectangles that just about cover the graph of f(x).

Of course, in practice one never uses the limit de�nition to compute an integral. Rather, one relies on the
Fundamental Theorem of Calculus, which says thatZ b

a

f(x)dx = F (b)� F (a)

where F (x) is any function such that dF
dx

= f(x). Thus, the problem of carrying out a direct integral is
reduced to �nding an anti-derivative of the integrand.

However, there are many examples of functions f for which there is no closed formula for anti-derivative of
f . A famous example is

f(x) = ex
2

:

Therefore, numerical integration is often the only means for ascribing values to expressions likeZ 1

0

ex
2

dx :

Now just as in the case of the derivative, the formal de�nition leads naturally to simple numerical procedure.
We simply choose a large value for N , set

�x =
b� a

N

~xi = a+�xi+
�x

2
; the midpoint of the interval [xi; xi+1]

and calculate
NX
i=0

f(~xi)�x :

However, while it's easy to write this computational algorithm down, it's not so obvious how to �gure out
how accurate the resulting calculation will be for any given value of N .
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In order to obtain a reliable estimate of the error we will replace the integrand f(x) by a polynomial
interpolation Pf (x). The reason for doing this is two-fold. First of all, since Pf (x) is a polynomial we can
compute its integral exactly: Z b

a

 
nX
i=0

Aix
i

!
dx =

nX
i=0

(i+ 1)Ai(b
i+1 � ai+1)

Secondly, we have an exact expression for the error that's introduced when we replace f(x) by an nth degree
polynomial interpolation:

f(x) � Pf (x) =
1

(n+ 1)!
f (n+1) (�x)

nY
i=0

(x� xi)

From this we can deduceZ b

a

f(x)dx�

Z b

a

Pf (x) =
1

(n+ 1)!
f (n+1) (�x)

Z b

a

 
nY
i=0

(x� xi)

!

Just as in the case of polynomial interpolation we would like to choose the interpolation nodes xi in such a
way that the factor

W =

Z b

a

 
nY
i=0

(x� xi)

!
dx �

Z b

a

!(x)dx

is minimized. Recall that in the case of polynomial interpolation we discovered that the optimal choice of
n + 1 nodes xi, at least on the interval [�1; 1] would be the roots of the Chebyshev polynomial Tn+1(x).
We have a similar situation here; however, instead of minimizing the maximal value of the product of the
(x � xi)'s we must instead try to minimize the integral of such a product. This leads us to using, instead
of the roots of the ordinary Chebyshev polynomials, the roots of another special set of polynomials, the
Chebyshev polynomials of the second kind. These polynomials are de�ned as follows:

Un(x) =
sin
�
(n+ 1) cos�1(x)

�
sin (cos�1(x))

and have the following properties

� Un(x) = 2�nxn+ lower order terms
� 2�n�1Un+1(x) = (x� x0)(x� x1)(x� x2) � � � (x � xn) where

xi = cos

�
(i + 1)�

n+ 2

�
; i = 0; 1; 2; : : : ; n

� If x0; : : : ; xn are the roots of Un+1(x) thenZ 1

�1

�����
nY
i=0

(x� xi)

����� dx = 2�(n+1)

� If f~xi j i = 0; 1; : : : ; ng is any other collection of n+ 1 point in [�1; 1], thenZ 1

�1

�����
nY
i=0

(x� ~xi)

����� � 2�(n+1)

Thus, one optimal technique for computing an integralZ 1

�1

f(x)dx

would be to calculate an n+ 1 point interpolation Pf (x) on the interval [�1; 1], using the points

xi = cos

�
(i + 1)�

n+ 2

�
; i = 0; 1; 2; : : : ; n
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as interpolation nodes and then settingZ 1

�1

f(x)dx �

Z 1

�1

Pf (x)dx :

To handle an integral over a more general interval, say [a; b] we'd use the the same trick that we used for
�nding optimal nodes for ordinary interpolation; we just map the interval [�1; 1] linearly onto the interval
[a; b] and look to see where the the nodes of Un(x) land. Thus, we set

xi =
a+ b

2
+

b� a

2
cos

�
(i + 1)�

n+ 2

�
; i = 0; 1; 2; : : : ; n

determine the interpolation polynomial Pf (x) corresponding to this set of nodes, and �nally setZ b

a

f(x)dx =

Z b

a

Pf (x)dx

Problem 19.1. Suppose Z b

a

f(x)dx

is calculated numerically by interpolating the function f(x) at the points

xi =
a+ b

2
+

b� a

2
cos

�
(i + 1)�

n+ 2

�
; i = 0; 1; 2; : : : ; n

and then integrating the interpolation polynomial between a and b. Express the maximal error in terms of
a derivative of f , n, and the end points of integration a and b. (Hint: Write down a change of variables
formula reduces the integral over [a; b] to an integral over [�1; 1].)

1. Other Quadratures

Now actually the program outlined above can be bit too computer intensive. Certainly we can use up
a lot of computer time �nding the Newton form for the interpolation polynomial for a large set of nodes,
converting the Newton form of the interpolation polynomial to standard form, and then integrating term
by term. Often what su�ces is a modest improvement over the naive algorithm coming from the formal
de�nition of the Riemann integral.

Here's the basic idea. The formulaZ b

a

f(x) �
NX
i=0

f(~xi)�x ; �x =
b� a

N
; ~xi 2 [a+ i�x; a+ (i + 1)�x](19.1)

was based on the idea that the area under the graph of f(x) can be approximated by forming a partitioning
the interval [a; b] into N subintervals [xi; xi+1] of width �x, approximating the area Ai under the graph of
f(x) under between xi and xi+1 by

Ai � f (~xi)�x ; ~xi 2 [xi; xi+1](19.2)

and then summing over the contributions Ai. The idea we'll pursue now is how to improve the approxi-
mations (19.2).

Let's �rst note that the approximation (19.2) is about the worst possible. For e�ectively, we're replacing the
function f(x) by a 1 point polynomial interpolation of f on the interval [xi; xi+1]. No doubt our accuracy
would improve if we instead used a three point polynomial interpolation instead.
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For notational clarity, let's replace xi and xi+1 by � and x + 2h, and consider the Lagrange form of the
three point interpolation of f(x) on the interval [�; �+2h] using the points �; �+h; �+2h. We then have

f(x) � f(�)
(x � �� h) (x� �� 2h)

(�h) (�2h)
+ f (�+ h)

(x� �) (x� �� 2h)

(h) (�h)
+ f(� + 2h)

(x� �) (x� �� h)

(2h) (h)

(19.3)

The expresion on the right hand side is a second order polynomial in x. If we expand it in powers of x and
integrate it between � and �+ 2h we obtainZ �+2h

�

f(x)dx �
h

3
[f(�) + 4f(�+ h) + f(�+ 2h)](19.4)

This formula is equivalent to Simpson'sRule (a rule that is often presented in elementary calculus courses.)

We can immediately apply this formula to get a new and improved version of (19.1). Setting

� = xi ; h =
�x

2

we have

Z xi+�x

xi

f(x) � �(xi) =
�x

2
[f(a) + 4f(a +�x=2) + f(a +�x)]

and so, setting

�x =
b� a

2
xi = a+ i�x

we have Z b

a

f(x)dx =
nX
i=1

Z xi

xi�1

f(x)dx �
nX
i=1

� (xi�1)�x

Of course, there's nothing stopping us from interpolating the subintervals [xi; xi+1] at four, �ve or more
points to obtain even more accurate quadrature formulae. However, the algebra between the analogs of
equations (19.3) and (19.4) becomes pretty strenuous.

There is an easy way of guessing the correct quadature formula. To demonstrate this technique let me
rework derivation of equation (19.4). The key idea is that polynomial interpolation at the points x0, x1,
: : : ; xn will always produce a formula of the formZ b

a

f(x)dx �

Z  nX
i=0

f (xi) `i(x)

!
dx =

nX
i=0

f (xi)

Z b

a

`i(x)dx(19.5)

where the `i(x) are the cardinal functions for the nodes x0; x1; : : : ; xn :

`i(x) =
nY

j=0
j 6=i

(x� xj)

(xi � xj)

If we de�ne

Ai �

Z b

a

`i(x)dx

then (??) takes the form Z b

a

f(x)dx �
nX
i=0

f (xi)Ai(19.6)
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no matter what the function f(x) is. Moreover, if f(x) is a polynomial of degree less than or equal to n,
then f(x) is identical to its polynomial interpolation (recall that the error term is proprotional to f (n+1)(�)
which would be zero if f were polynomial of degree � n). By taking f(x) = 1; x; x2; : : : ; xn we arrive at a
series of n+ 1 equations for the n+ 1 constants Ai :

b� a =

Z b

a

1dx =
nX
i=0

Ai

1

2

�
b2 � a2

�
=

Z b

a

xdx =
nX
i=0

xiAi

...

1

n+ 1

�
bn+1 � an+1

�
=

Z b

a

xndx =
nX
i=0

xni Ai

Solving this system of equations for the constants Ai will give us a quadature formula (19.6) that can be
used for any function f(x).

Let me now demonstrate this technique for the case where we do a three point interpolation to calculateZ a+2h

a

f(x)dx :

Set x0 = a, x1 = a+ h, x2 = a+ 2h. The interpolation is exact when f(x) = 1: So

A0 + A1 +A2 =

Z a+2h

a

1dx = 2h

The interpolation is also exact when f(x) = x. So

A0(a) + A1(a+ h) +A2(a+ 2h) =

Z a+2h

a�2h

xdx =
1

2

�
(a+ 2h)2 � (a)2

�
= 2ah� 2h2

And the interpolation is exact when f(x) = x2. Thus,

A0(a)
2 + A1(a + h)2 + A2(a + 2h)2 =

Z a+2h

a

x2dx =
1

3

�
(a+ 2h)3 � (a)3

�
=

We thus arrive at the following system of equations0
@ 1 1 1

a a+ h a+ 2h
a2 (a+ h)2 (a+ 2h)2

1
A
0
@ A0

A1
A2

1
A =

0
@ 2h

1
2(a+ 2h)2 � 1

2a
2

2a2h+ 4ah2 + 8
3h

3

1
A

The solution of this system

A0 =
1

3
h

A1 =
4

3
h

A2 =
1

3
h

and so Z a+2h

a

f(x)dx �
1

3
hf(a) +

4

3
hf(a + h) +

1

3
hf(a + 2h)

which is identical to (19.4).

Problem 19.2. Find a quadrature formula for the integralZ a+3h

a

f(x)
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corresponding to the case where the function f(x) is interpolated at four points: x0 = a, x1 = a + h,
x2 = a+ 2h, x3 = a+ 3h;


