LECTURE 18

Numerical Differentiation

We shall now look at the problems related to the calculation of derivatives via numerical methods. Now at
first thought, it would seem that a numerical calculation of a derivative would be rather straight-forward.
For the very definition of the derivative

f(z) = lim

h—0 h

Sz 4+ h) = f(x)

lends itself immediately to a natural numerical approximation for a derivative:

f'(x) ~

(x4 h) = f(x)

h

. h<<l1.

It would thus seem that, if we wanted to get an extremely accurate value for the derivative of a function,

all we’d have to do is pick a small enough value for A and calculate

(18.1)

Let’s see if this really works. Let f be the function f(z) = sin(x), so that f'(#) = cos(z).

f(z4+h) = f(x)

h

F/(1) using the formula above using successively small values of h.

The output of this program is

flexact

B W N e
== i = i =
[l

f := x -> sin(x);
f1 := x -> cos(x);
x0 := 1.0:

flexact := £1(x0);

lprint(‘flexact =¢,flexact):

lprint (¢):
h:= 0.5;
n := 15:

for i from 1 to n do
Deltaf := f(x0 + h) - f(x0):

df/dx

H O B H HH

sample point
the exact result for df/dx at x=1.0
print value to screen
print a blank line
initial value of h

number of interations

flapprox := Deltaf/h;

error := flexact - flapprox;

lprint(i, ‘h =°,h, ‘flapprox =¢,flapprox, ‘error =¢,error):
h := h/10;

od:

.5403023059

.5

.5000000000e-1
.5000000000e-2
.5000000000e-3

flapprox

flapprox =
flapprox =
= .5400920000

flapprox

= .3120480036

.5190448160
.5381963800

1

error
error
error
error

.2282543023
.212574899e-1
.21059259e-2
.2103059e-3

We will calculate

18. NUMERICAL DIFFERENTIATION 2

.5000000000e-4 flapprox = .5402820000 error = .203059e-4
= .5000000000e-5 flapprox = .5403000000 error = .23059e-5

= .5000000000e-6 flapprox = .5404000000 error = -.976941e-4
= .5000000000e-7 flapprox = .5400000000 error = .3023059e-3
= .5000000000e-8 flapprox = .5400000000 error = .3023059e-3

© 0 ~N O !
== -

10 h = .5000000000e-9 flapprox = 1.000000000 error = -.4596976941
11 h = .5000000000e-10 filapprox = 0 error = .5403023059
12 h = .5000000000e-11 filapprox = 0 error = .5403023059
13 h = .5000000000e-12 flapprox = 0 error = .5403023059
14 h = .5000000000e-13 flapprox = 0 error = .5403023059
15 h = .5000000000e-14 filapprox = 0 error = .5403023059

Notice that our closest estimate does not occur for the smallest value of h: in fact, once h is smaller than
5 x 107° our estimates for f/(1.0) get progressively worse. Indeed, even as we approach the optimal value
of h we have a problem; for we start losing significant digits at ¢ = 3.

The loss of significant digits, of course, can be traced to the subtraction error that occurs when we try to
compute the difference between two floating point numbers of about the same size: e.g.,

1.1234567 x 107 — 1.1234566 x 107 = 0.0000001 x 107

The complete failure of this algorithm for very small values of & (i > 10) has to do with the fact that there
is only a discrete set of machine numbers; for once h gets small enough f(z + k) and f(z) will correspond
to the same machine number and so their computed difference will be zero.

In summary, we can not improve the accuracy of numerical computations of derivatives by simply making
h small enough. What we shall try to do instead i1s to make our computations as accurate as possible for
fixed values of h.

We’ll thus need to analyze the error inherent in the approximation

oy K= 500

Recall that the 1°* order Taylor formula (with Lagrange Remainder)

1
Pl h) = J(2) + 7/ @)+ L (60
is an exact identity for some point &, € [z, z + h]. Solving this equation for f'(z) we obtain

f/(l‘) — f(x"i'h]z_f(x) _ %f// (&)h

This tells us that the error involved in estimating f/(z) using (18.1) is of order h. Now as we seen above,
making h smaller as a means of improving our accuracy is only effective up to a point (the point where
subtraction and floating point errors kick in). We might therefore look for means for estimating f/(z) such
that the error term is of higher order in A.

Here’s one simple way to do that. Suppose we take the difference of the following two second order Taylor
formulae

Jh) = @)+ L @h+ @ €@ &€ [t]
(18.2) fla=h) = f@)=F@h+ G @h = e €)R L G e fe—ha

18. NUMERICAL DIFFERENTIATION 3

= SR = fe = h) =2 @h o+ (e > P (E)
, _f(x_i_h)_fx_ 1 f/// f///(€2)
= Jl)= 2h 6()
= py= R TES R Lprgre celp—nnen

where in the last step we have applied the Mean Value Theorem for f”(x) on the interval [x — h,z + h].
We thus arrive at an estimate for f/(x) for which the error term is of order h2.

If we replace the do-loop in the Maple code above with

for i from 1 to n do
Deltaf := f(x0 + h) - £(x0 -h):
flapprox := Deltaf/(2#h);

error := flexact - flapprox;
lprint(i, ‘h =°,h, ‘flapprox =¢,flapprox, ‘error =¢,error):
h := h/10;

od:

we get the following output

.5 flapprox = .5180694480 error .222328579e-1
.5000000000e-1 flapprox = .5400772080 error = .2250979e-3

= .5000000000e-2 flapprox = .5403000500 error = .22559e-5
.5000000000e-3 flapprox = .5403023000 error = .59e-8
.5000000000e-4 flapprox = .5403030000 error = —-.6941e-6

= .5000000000e-5 flapprox = .5403000000 error = .23059e-5

= .5000000000e-6 flapprox = .5403000000 error = .23059e-5

© 0 N O 0O W N =
=gl == = - - - =
1]

= .5000000000e-7 flapprox = .5400000000 error = .3023059e-3

= .5000000000e-8 flapprox = .5400000000 error = .3023059e-3
10 h = .5000000000e-9 flapprox = .8000000000 error = -.2596976941
11 h = .5000000000e-10 flapprox = 0 error = .5403023059
12 h = .5000000000e-11 flapprox = 0 error = .5403023059
13 h = .5000000000e-12 flapprox = 0 error = .5403023059
14 h = .5000000000e-13 filapprox = 0 error = .5403023059
15 h = .5000000000e-14 flapprox = 0 error = .5403023059

Looking at this data, we see that we have the same problem as before with extremely small values of A.
However, we are able to achieve an absolute error of 0.59 x 1078 in 4 steps; which is much better than the
earlier method (for which the least error was 0.23059 x 10~° and which took 6 steps to reach.)

1. RICHARDSON EXTRAPOLATION 4

1. Richardson Extrapolation

We can do even better though. TLet’s assume f(z) is a smooth function so that we can write

S 1 ! 1 1 1 11
fw+h) = ;Hf(“(l‘)h’“zf(l‘)+f(r)h+§f ()h? 4 f" (@) -

fle—h) = 3 F @ = @)~ f@h = R

Note that since the series expansions are infinite, we can regard these as exact equations. Subtracting these
two equations and solving for f/(z) yields

F@) = 5o Ul +) = Jla =B = | 7@+ 2 fO @kt + 27O @)h° -

Let us write this as

(18.3) f(z) = ¢o(h) + azh® + ash* + agh® + - -
where
bolh) = o [f(e+h)— Sz — h)
az = %f”/(l‘)
ay = %(5)(95)
ag = %(7)(1‘)

This equation should be true for all small &, in particular for h/2. So we should also have

2 4 6
s a)ee(d)))
(18.5) (&) = ¢o (g) + %azhz + %a4h4 + 6i4a6h6

If we then subtract 1/3 times equation (18.4) from 4/3 times equation (18.5) we can arrange it so that the
terms of order h? cancel, obtaining
1

(186) F(a) = g0 (1) + 300 (3) = oah’ = Srash® 4

We thus achieve an expression for f/(z) where the error term is of order h*.

Having achieved this success, we might as well continue. Equation (18.6) is good (and in fact, exact) for
all sufficiently small k. Setting

1 4 h
h) = —=¢o(h)+ = -
¢1(h) 3¢0()-1-3(!50(2)
1
b4 = —104
5
b6 = —E%
we can again write down two equivalent expresssions for f/(x)
F@) = ¢1(h)+bah® +bsh® + -
1 1
) = ¢1(h/2) + —bsh* + —bh®+

16 64

1. RICHARDSON EXTRAPOLATION 5

If we then take subtract % times the first equation from = tlmes the first we obtain

fﬁﬁ:—ﬁmw%+£¢<h)+%<l—0bm6

We thus obtain an expression for f'(x)

F/(2) % 63(a) = 1 0n () + 1561 (g)

that is accurate to to order A%. Tt should be clear that this process can be continued until

Let’s now turn this into a numerical algorithm. The first thing to do is to identify the pattern that mediates
the successive expressions for f'(x). We have

flx+ h) f(r —h)

¢o(h) =
oy = —3outn + 300 () = —grgoo)+ 500 (5)
¢a2(h) = —%fﬁ()%- — ¢ (g)——@—l_lqsl(hﬂ-%qsl (g)

and so 1t would seem

1 4t h
¢i(h) = —H¢z’—1(h) + m¢i—1 (5)

Before translating this into computer code. Let’s make the following definition. Let
Rp[n,i] == ¢; <h2_n)
We then have

Ry[n,0] = ¢ (277) = Sz + 2—”?:;{]1(9; _9-np)

and the recursive formulae

1 4i
—_—) - 1 -
el i =1+

This quantity Rj[n,i] will be the i** order Richardson Expolation of f'(z) with h = 27".

Ruln,i] = Rp[n+1,i—1]

The following program calculates the fourth order Richardson Extrapolation of f/(1.0) for f(#) = sin(z).

R[0] := (£f(x+h) - £(x-h))/(2%h);
for i from 1 to 4 do

pl := R[i-11/(4"1 -1);

p2 := (47i)*subs({h=h/2},pl);
R[i] := p2 - pi1;

od:
R4 := R[4];
f := x -> evalf(sin(x));

dfapprox := (x1,h1) -> subs({x=x1,h=h1},R4);

x0 := 1.0;
hO := 0.1;
for i from 1 to 10 do
dfR4 := evalf(dfapprox(x0,h0));
lprint(‘h =¢,h0, ‘dfR4 =¢, dfR4);

1. RICHARDSON EXTRAPOLATION 6

hO := h0/10;
od:

This program produces the following output.

h = .1 dfR4 = .5403023038
h = .1000000000e-1 dfR4 = .5403023410
h = .1000000000e-2 d4dfR4 = .5403028570
h = .1000000000e-3 dfR4 = .5403029364
h = .1000000000e-4 dfR4 = .5402236374
h = .1000000000e-5 dfR4 = .5418266476
h = .1000000000e-6 dfR4 = .506746747
h = .1000000000e-7 dfR4 = .71775075

h = .1000000000e-8 dfR4 = 2.9495862

h = .1000000000e-9 dfR4 = 0

Of course, exact answer is cos(1.0) = 0.5403023059. We thus see that we can achive a very accurate result
(correct to 7 decimal places on the very first iteration. The fact that we don’t get much better results
for smaller values of h is of course due to the fact that, for a given value of A, subtraction errors kick
in much earlier for the Richardson Extrapolation. For example in computing the fourth order Richardon
Extrapolation the program needs to calculate

h h
f(l‘+2—4)—f<l‘—2—4)5

And so in practice, when one employs an n'? order Richardson Extrapolation one has to be sure that h/2"
is not too small.

