
LECTURE 12

Privoting Strategies for Gaussian Elimination

1. Problems with Basic Gaussian Elimination

In the preceding lecture we discussed the basic algorithm for Gaussian elimination. Unfortunately, this
algorithm does not always work. Consider the following simple example�

0 1
1 1

��
x1
x2

�
=

�
1
2

�

If we were to use Gaussian elimination to produce an equivalent lower triangular system, then we would
meet the following obstruction: there is no way to add a multiple of the �rst row to the second row in order
to kill o� the �rst entry in the second row.

The basic Gaussian elimination algorithm is also a bit problematical when a pivot element is small. For
consider the following system �

" 1
1 1

��
x1
x2

�
=

�
1
2

�
; " << 1

After the �rst stage of Gaussian elimination we have�
" 1
0 1� "�1

��
x1
x2

�
=

�
1

2� "�1

�

the solution of which is

x2 =
2� "�1

1� "�1

x1 = (1� x2)"
�1

On a computer, if " is small enough both 2� "�1 and 1� "�1 will be computed to be the machine number
corresponding to �"�1. Hence, x2 � 1 and so x1 � 0.

However, the exact solution is

x1 =
1

1� "
� 1

x2 =
1� 2"

1� "
� 1

Thus, the computed solution for x1 would be way o�.

A �nal example will show that it is not so much the smallness of the coe�cient a11 that's causing the trouble,
but rather the smallest of its size relative to the other elements in its row. To see this, let's multiply the
�rst row in the example above by "�1 to obtain�

1 "�1

1 1

��
x1
x2

�
=

�
"�1

2

�

1

1. PROBLEMS WITH BASIC GAUSSIAN ELIMINATION 2

This is an equivalent system of equations, but now a11 is no longer particularly small. Gaussian elimination
leads us to �

1 "�1

0 1� "�1

��
x1
x2

�
=

�
"�1

2� "�1

�

the solution of which would be

x2 =
2� "�1

1� "�1

x1 = (1� x2)"�1

and we have the same problem as before x1 � 0 6= 1:

1.1. Pivoting Strategies. The di�culties in all the examples above can be avoided if the order of
equations is changed. For example, �

1 1
" 1

��
x2
x1

�
=

�
2
1

�

is an equivalent system. but now Gaussian elimination produces�
1 1
0 1� "

��
x2
x1

�
=

�
2

1� 2"

�
or

x1 =
1� 2"

1� "
� 1

x2 = 2� x1 � 1

Let me now show you how this simple idea of interchanging rows can be developed into a working algorithm.

First some notation. By a row permutation we shall mean a reordering of the rows of a matrix. The possible
row permutations of an n � n matrix can be prescribed by special n-dimensional vectors as follows. Let
p = (p1; p2; : : : ; pn) be a n-dimensional vector such that for each integer i from 1 to n there is some integer
j 2 f1; : : : ; ng such that pj = i. (In other words, the components of pmust coincide wtih some reordering of
the integers from 1 to n.) The row permutataion of an n�n matrixA corresponding to such a permutation
vector p will then be the matrix whose ith row is identical to the (pi)th row of A.

Example 12.1. Let

A =

0
@ 1 2 3

2 4 6
3 6 9

1
A

Then the row permutation of A corresponding to the permutation vector p = (3; 1; 2) will be

PA =

0
@ 3 6 9

1 2 3
2 4 6

1
A

Remark 12.2. As the notation in the preceding example suggests. A row permutation of a matrix A can
also be viewed as the matrix product of a specical matrix P and the matrix A. Indeed, let p = (p1; : : : ; pn)
be a permutation vector, and let P be de�ned by

(P)ij =

�
1 if j = pi
0 if j 6= pi

then the row permutation of A corresponding to the permutation vector p is precisely the matrix product
PA.

1. PROBLEMS WITH BASIC GAUSSIAN ELIMINATION 3

Now that we have generalized and systematized the notion of interchanging the rows of a matrix, the next
thing we need to do is �gure out a way of identifying a row permutation that improves, if not makes feasible,
our basic Gaussian elimination algorithm.

In the examples above we demonstrated problems that arise when a pivot element is too small relative to
the other elements in its row. The basic idea for circumventing these di�culties was to switch a \bad" row
with a \better" one below it. To implement this idea, we must decide how to measure the `badness" and
\goodness" of rows.

Since the crux of the problem has to do with the size of the leading element of a pivoting row compared to
the size of the other non-trivial elements in the row, a natural way to choose a row to interchange with the
�rst row (before the �rst stage of Gaussian elimination) would be to calculate for each i from k to n the
numbers

si = maxfjaikj ; jai;k+1j ; : : : ; jainjg

qi =
jakij

si

We shall refer to these numbers, respectively, as the scale and quality of the ith row at the kth stage of
Gaussian elimination. In our improved Gaussian algorithm we will seek to identify row with maximal qi
and then interchange that row with the �rst row before carrying out the next stage of Gaussian elimination.
This technique is called Gaussian Elimination with Scaled Row Pivoting:

Example 12.3. Consider the matrix equation

A =

0
@ 1 3 6

1 1 1
1 3 3

1
A
0
@ x1

x2
x3

1
A =

0
@ 1

2
3

1
A

We intend to keep track of the row exchanges by using a permutation vector p. Initially, we'll have
p = (1; 2; 3); since PA = A (meaning, the permutated matrix has the �rst row of A as its �rst row, the
second row of A as its second row, etc.).

The initial scales of the rows of A are evidently

s1 = 6 ; s2 = 1 ; s3 = 3

and so the corresponding qualities are

q1 =
1

6
; q2 = 1 ; q3 =

1

3

So the second row has the highest quality. Therefore, before carrying out the row operations we'll interchange
the second row with the �rst. 2

4 1 1 1
1 3 6
1 3 3

3
5

This operation corresponds to the permutation vector p = (2; 1; 3). Now we carry out the �rst stage of
Gaussian elimination.

)

2
4 1 1 1

1 2 5
1 2 2

3
5

1. PROBLEMS WITH BASIC GAUSSIAN ELIMINATION 4

(Note our use of the improved notation for carrying out simultaneous Gaussian elimination and LU factor-
ization.) Now the qualities of the second and third rows are

q2 =
2

5
q3 = 1

Because the quality of the third row is greater than that of the second, we interchange those to rows before
carrying out the last stage of Gaussian elimination2

4 1 1 1
1 2 5
1 2 2

3
5)

2
4 1 1 1

1 2 2
1 2 5

3
5 ; p = (2; 1; 3)) p = (2; 3; 1)

2nd stage of Gaussian Elimination)

2
4 1 1 1

1 2 2
1 1 3

3
5

Pulling the matrix apart into its lower triangular and upper triangular factors yields

LU =

0
@ 1 0 0

1 1 0
1 1 1

1
A
0
@ 1 1 1

0 2 2
0 0 3

1
A =

0
@ 1 1 1

1 3 3
1 3 6

1
A

Note that LU is not a factorization of the original matrixA but rather the permutation of A corresponding
to the �nal permutation vector p = (2; 3; 1). That's okay though, because even though we don't have an LU

factorization appropriate for the equation Ax = b, we do have one for the equivalent equation PAx = Pb.
In other words, we can determine the solution of Ax = b by interchanging the components of b according
to the permutaion vector p and then use the LU factorization of PA to solve

LUx = PAx = Pb

for x.

1.2. General Algorithm for Gaussian Elimination with Scaled Row Pivoting. It's time now
to generalize and systematize the procedure used in the preceding example. This procedure added two
additional tasks to the basic Gaussian elimination algorithm:

1. Identi�cation of the row that had the highest \quality", and selecting that row as the pivoting row.
2. Interchanging rows and keeping track how we've permutated rows.

Now the �rst task is fairly easy to implement. We simply calculate the scales si and qualitities qi of the
rows and select the row corresponding to the maximal value of qi.

To accomplish the second task, we'll use permutation vectors to keep track of the row interchanges. To wit,

the ith row after a row permutation prescribed by a vector p = (p1; p2; : : : ; pn) will be the (pi)
th

row of the
original matrix. For example, if

A =

0
@ 1 2 3

4 5 6
7 8 9

1
A

p = (3; 1; 2), and then

PA =

0
@ 7 8 9

1 2 3
4 5 6

1
A

What's nice about this technique for describing row interchanges is that we can insulate the complications of
row interchanges from the rest of the Gaussian algorithm by precribing the row indices by the corresponding

1. PROBLEMS WITH BASIC GAUSSIAN ELIMINATION 5

components of the permutation vector p. For example, suppose we knew that the permuted matrix PA
was upper triangular. Then we could solve

(PA)x = Pb

using

xn�i =
1

(PA)n�i;n�i

(Pb)n�i �

i�1X
s=0

(PA)n�i;s xs

!

=
1

apn�i;n�i

bpn�i �

i�1X
s=0

ap
n�i;sxs

!

Note here that apn�i;j is the jth element in the (pn�i)
th row of the original matrix A.

Let me now write down the Maple code that carries out Gaussian elimination with scaled row pivoting.
(Note that code below assumes that an n-dimensional matrix A and an n-dimensional column vector b
have already been declared and intialized with numerical values).

s := array(1..n); # vector to hold row scales

p := array(1..n); # permutation vector

P := array(1..n,1..n); # matrix corresponding to p

PA := array(1..n,1..n); # matrix corresponding to final permuation of A

at the final stage of Gaussian elimination

L := array(1..n,1..n); # the lower triangular factor

U := array(1..n,1..n); # the upper trianuglar factor of

LU := array(1..n,1..n); # the matrix product of L and U

#initialize the permutation vector p and the row scales

for i from 1 to n do

p[i] := i;

s[i] := 0;

for j from 1 to n do

if abs(A[i,j]) > s[i] then s[i] := abs(A[i,j]) fi;

od;

s[i];

od;

n1 := n-1; # many sums are from 1 to n-1

for k from 1 to n1 do

i := k;

pk := p[k];

maxq := abs(A[pk,k])/s[pk]; # maximum quality

#find row with highest quality

for j from k+1 to n do

pj := p[j];

q := abs(A[pj,k])/s[pj];

if q > maxq then

maxq := q;

i := j;

fi;

od;

update p

tmp := p[k];

1. PROBLEMS WITH BASIC GAUSSIAN ELIMINATION 6

p[k] := p[i];

p[i] := tmp;

pk := p[k];

k;

carry out kth stage of Gaussian elimination

for i from k+1 to n do

pi := p[i];

z := A[pi,k]/A[pk,k];

A[pi,k] := z;

for j from k+1 to n do

A[pi,j] := A[pi,j] - z*A[pk,j];

od;

od;

od;

end of Gaussian elimination

form the permutation matrix corresponding to p

for i from 1 to n do

for j from 1 to n do

if p[i] = j then P[i,j] := 1 else P[i,j] := 0 fi;

od;

od;

now we'll explicitly swap the rows in end product A

for i from 1 to n do

for j from 1 to n do

PA[i,j] := add(P[i,k]*A[k,j],k=1..n);

od;

od;

print(`end product of Gaussian elimination is`,A);

print(`PA is`, PA);

for i from 1 to n do

for j from 1 to n do

if i<j then

U[i,j] := PA[i,j];

L[i,j] := 0;

elif i=j then

U[i,j] := PA[i,j];

L[i,j] := 1;

else

U[i,j] := 0;

L[i,j] := PA[i,j];

fi;

od;

od;

print(`L is`, L);

print(`U is`, U);

for i from 1 to n do

for j from 1 to n do

LU[i,j] := add(L[i,k]*U[k,j],k=1..n);

1. PROBLEMS WITH BASIC GAUSSIAN ELIMINATION 7

od;

od;

print(`LU is`, LU);

Note: I have again I introduced additional array variables (PA, L, U, and LU) for conceptual clarity.

