
LECTURE 6

Programming Syntax for Maple

1. Introduction

While there is no one required programming language for the course, all of the explicit programming
examples presented in class will be carried out in Maple. For those of you that more confortable with
another programming languare (C, Pascal, FORTRAN, Basic, whatever) you are free to carry out your
homework assignments in that language.

This lecture is devoted to outlining the basic programming constructs for Maple.

2. Basic Basics

Maple is loosely typed procedural programming. This makes it particularly straight-forward programming
novices.

The simplest Maple statement might be a command like

x := 2;

This sets equal to the integer 2 (and also declares a new variable textttx if the symbol x has not been
previously introduced. An alternative to this statement might be

x := 2:

Note that the semi-colon has been replaced by a colon. This is equivalent to the �rst example, except
that the result will not be con�rmed on screen. This construct is handy when one has a long sequence of
repetitive statements; it avoids a lot of \screen clutter". The statement

x := [2,2];

declares and de�nes x as a two element list. Advanced programmers might note that we did not have to
declare the variable x to be a particular data type. Maple �gured out a data type for x for us. In short, the
assignment operation

A := B;

assigns to (and/or creates) a variable named A that's equal to whatever the value of the right hand side is.

2.1. Simple Logic Tests.

1



2. BASIC BASICS 2

2.1.1. Logic Operators.

� (A and B) : returns 1 (true) if both condition A and condition B are true, otherwise it returns 0
(false).

� (A or B) : returns 1 (true) if either
{ condition A is true,
{ condtion B is true, or
{ both conditions A and B are true.
Otherwise, it returns 0 (false).

� (not A) : the negation of condtion A. Returns 1 (true) if A is false, and 0 (false) if A is true.

2.1.2. Comparison Operators.

� (A = B) : returns 1 (true) if variable A equals B, and returns 0 (false) if A is not equal to B.
� (A <> 0) : returns 0 (true) if variable A equals B, and returns 1 (false) if A is not equal to B.
Another way of writing the "not-equal" test is (not A = B).

� (A > B) : returns 1 (true) if variable A is greater than B, and returns 0 (false) if A is less than or
equal to B.

� (A < 0) : returns 1 (true) if variable A is greater than B, and returns 1 (false) if A is greater than
or equal to B.

� (A >= B) : returns 1 (true) if variable A is greater than or equal to B, and returns 0 (false) if A is
less than B. (Equivalent to (not A < B)).

� (A <= 0) : returns 1 (true) if variable A is less than or equal to B, and returns 1 (false) if A greater
than B. (Equivalent to (not A > B)).

2.2. Flow Control.

2.2.1. If Statements. The simplest type of if statement would be a routine of the form

if condition_A then statement_B fi;

Here if, then, and fi are all essential keywords, that are used by Maple to delimit and identify the various
components of this if statement. For example,

if (2 = 1 + 1) then x := 2 fi;

ends up assigning the value 2 to the variable x.

More elaborate if statements are constructed as follows

if condition_A then do

statement1;

statment2;

statement3;

od;

elif condition_B then do

statement4;

statement5;

od;

elif condition_C then do

statement6;

statement7;

od;



2. BASIC BASICS 3

else do

statement8;

statement9;

od;

fi;

2.3. Iterative Loops. An example of the most comprehensive iterative loop routine for Maple is
might be a sequence of statements

for i from 1 to 1000 by 2 while (x < 100000) do

statement1;

statement2;

statement3;

od:

It is not necessary to include all these options in an iterative loop. Here are two examples.

Example 6.1.

for i to 1000 do

statement1;

statement2;

statement3;

od;

In this example, Maple assumes that the index i is ranging from 1 to 1000 and increasing by 1 at each
iteration of the do loop.

Example 6.2.

i := 1;

while (i < 1000) do

i := i + 1;

od;

In this example, the loop continues until the condition x < 1000) fails. Note that this will cause all sorts
of trauma it this condition is never met. In using this construct, it is important to take care that

1. an initial value of i is de�ned
2. eventually the while test must fail.


