
LECTURE 1

Variations on Taylor's Formula

Numerical methods are ipso facto approximate methods. This being the case, it will be important through-
out this course to determine the accuracy of numerical results. We shall begin by reviewing the analytic
methods by which we approximate functions and how we bound the errors that arise from such approxima-
tions.

Definition 1.1. We denote by Cn[a; b] the set of functions on the interval [a; b] � R that have continuous
derivatives up to order n. We denote by Cn(R) the set of functions on the real line that have continuous
derivatives up to order n. We denote by C1[a; b] and C1(R) the sets of functions for which derivatives of
all orders exist on, respectively, [a; b] and R.

Example 1.2. If f(x) � x2 sin(1=x) then f is in C1(R) but not in C2(R). To see this, note

lim
x!0

f(x) = lim
x!0

�
x2 sin

�
1

x

��
= 0

since x2 ! 0 and sin
�
1
x

�
is bounded between �1 and 1. Thus f 2 C0(R).

df

dx

����
x=0

� lim
x!0

f(x) � f(0)

x

= lim
x!0

�
x sin

�
1

x

��

= 0

again because it the limit of a function that is the product of a function that vanishes at the limit point
and a function that remains bounded. So f is also in C1(R). However,

d2f

dx2

����
x=0

� lim
x!0

f 0(x) � f 0(0)

x

= lim
x!0

2x sin(1=x)� cos( 1
x
)� 0

x

= lim
x!0

� cos( 1
x
)

x

does not exist. Thus, f =2 C2(R).

Remark 1.3. In general, we have

C1[a; b] � � � � � C3[a; b] � C2[a; b]� C1[a; b]� C0[a; b]

Theorem 1.4. (Taylor's Theorem with Integral Remainder). If f 2 Cn+1[a; b], then for any points
x; xo 2 [a; b],

f(x) =
nX

k=0

1

k!
f (k)(xo)(x� xo)

k +Rn(x)

where

Rn(x) �
1

n!

Z
x

xo

f (n+1)(t)(x � t)ndt

1
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Proof. This theorem is surprisingly easy to prove. We start by using integration by parts to evaluate the
right hand side of the de�nition of the error term Rn(x): Setting

u = 1
n! (x� t)n dv = f (n+1)(t)dt

du = � 1
(n�1)!(x� t)n�1 v = f (n)(t)

and using the integration by parts formulaZ
x

xo

udv = uvj
x

xo
�

Z
x

xo

vdu

we �nd

Rn(x) �
1

n!
(x� t)nf (n)(t)

����
x

xo

+
1

(n� 1)!

Z
x

xo

f (n)(t)(x� t)n�1dt

= �
1

n!
f (n) (xo) (x� xo)

n +Rn�1(x)

We thus have a recursive formula for Rn(x). Using this recursive formula over and over again we can reduce
the right hand side to

Rn(x) = �
1

n!
f (n) (xo) (x� xo)

n �
1

(n� 1)!
f (n�1)(xo)(x� xo)

n�1 + � � �

� � � �
1

1!
f 0(xo)(x� xo)

n +
1

0!
R0(x)

= �

nX
n=1

f (n) (xo) (x� xo)
n +

1

0!

Z x

xo

f 0(t)(x � t)0dt

= �

nX
n=1

f (n) (xo) (x� xo)
n +

Z
x

xo

f 0(t)dt

= �

nX
n=1

f (n) (xo) (x� xo)
n
+ f(x) � f (xo)

= �

nX
n=0

f (n) (xo) (x� xo)
n
+ f(x)

Solving the extreme sides for f(x) yields

f(x) =
nX

k=0

1

k!
f (k)(xo)(x� xo)

k +Rn(x)

Remark 1.5. Note that in this formulation of Taylor's Theorem, we have an explicit formula for computing
the error term Rn(x). However, since the error term depends on the choice of x and xo in a non-trivial way,
we do not have (at least at face value) an understanding of how the error term changes as we vary x. Such
an understanding would be critical if we are to regard

fn(x) �
nX

k=0

1

k!
f (k)(xo)(x � xo)

k

as a polynomial function approximate to the original function f(x). Below we'll deduce bounds on the
error term Rn(x) as x ranges throughout the interval [a; b].

Theorem 1.6. (Mean Value Theorem for Integrals). Let u and v be continuous real-valued functions
on an interval [a; b], and suppose that v(x) � 0 for all x 2 [a; b]. Then there exists a point � 2 [a; b] such
that Z b

a

u(x)v(x)dx = u(�)

Z b

a

v(x)dx .
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Proof. Let � and � denote, respectively, the minimal and maximal values of u(x) on [a; b]. Then

�v(x) � u(x)v(x) � �v(x) ; 8 x 2 [a; b]

Integrating this relationship between a and b yields

�

Z b

a

v(x)dx �

Z b

a

u(x)v(x)dx � �

Z b

a

v(x)dx

or

� �

R
b

a
u(x)v(x)dxR
b

a
v(x)dx

� �

Now by hypothesis, � = u (x1) and � = u (x2) for some x1; x2 2 [a; b] . By the Intermediate Value Theorem
for Continuous Functions, for any number 
 between � and � there must exist a point � 2 [a; b] such that
u(�) = 
. In particular, there must exist a point � 2 [a; b] such that

u(�) =

R
b

a
u(x)v(x)dxR
b

a
v(x)dx

Hence there exists a point � 2 [a; b] such thatZ b

a

u(x)v(x)dx = u(�)

Z b

a

v(x)dx

Remark 1.7. The usual Mean Value Theorem; i.e., the statement that if f(x) is continuous and di�eren-
tiable on [a; b] then there is a point � 2 [a; b] such that

f 0(�) =
f(b) � f(a)

b� a

is a special case of the formulation above. To see this, note that if we take u(x) = f 0(x) and v(x) = 1, then
the above theorem implies Z b

a

f 0(x)dx = f 0(�)

Z b

a

dx

Carrying out the integrations on both sides yields

f(b) � f(a) = f 0(�) (b� a) ) f 0(�) =
f(b) � f(a)

b� a

Theorem 1.8. (Taylor's Theorem with Lagrange Remainder). If f 2 Cn[a; b] and fn+1(x) exists on
(a; b) then for any point x and xo in [a; b]

f(x) =
nX

k=0

1

k!
f (k)(xo)(x � xo)

k + En(x)

where

En(x) =
1

(n+ 1)!
f (n+1)(�) (x� xo)

n+1

for some point � between x and xo:

Proof. According to Taylor's Theorem with Integral Remainder is

f(x) =
nX

k=0

1

k!
f (k)(xo)(x� xo)

k +
1

n!

Z x

xo

f (n+1)(t)(x � t)ndt

By the Mean Value Theorem for Integrals

1

n!

Z
x

xo

f (n+1)(t)(x � t)ndt =
1

n!
f (n+1)(�)

Z
x

xo

(x� t)ndt =
1

(n + 1)!
f (n+1)(�) (x� xo)

n+1
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for some � between x and xo. Hence,

f(x) =
nX

k=0

1

k!
f (k)(xo)(x � xo)

k +
1

(n+ 1)!
f (n+1)(�) (x� xo)

n+1

for some � between x and xo.

Remark 1.9. Note that in this formulation of Taylor's theorem the error term is still not precisely deter-
mined; because the point � in the theorem statement is left undetermined. We know only that there is some
point � 2 [a; b] such that

f(x) �
nX

k=0

1

k!
f (k)(xo)(x� xo)

k =
1

(n+ 1)!
f (n+1)(�) (x� xo)

n+1

However, what we gain in this formulation are solid bounds on the size of the error term over a range of x.
To see this let M be the maximum value of

��f (n+1)(x)�� on the interval [a; b], then�����f(x) �
nX

k=0

1

k!
f (k)(xo)(x � xo)

k

����� �
M

(n+ 1)!
jx� xoj

n+1

Note that this bound is independent of the choice of x and xo in [a; b].

Corollary 1.10. (Alternative Form of Taylor's Theorem.) If f 2 Cn+1[a; b], then for any points x
and x+ h 2 [a; b],

f(x + h) =
nX

k=0

1

k!
f (k)(x)hk +En(h)

where

En(h) =
1

(n+ 1)!
f (n+1)(�)hn+1

in which the point � lies between x and x+ h.

1. Problems

1.1. Given that

dn

dxn
(ln jxj)

����
x=1

= (�1)n�1(n� 1)!

(a) Use the Taylor Theorem with Integral Remainder to �nd the magnitude of the error term R100(1:99)
when one approximates ln[1:99] using the �rst 101 terms of the Taylor expansion about 1 of ln jxj.

(b) Use the Taylor Theorem with Lagrange Remainder to obtain an upper bound on the error term E100(x)
when x ranges from 1.985 to 1.995 for the Taylor expansion of ln jxj about 1.


