
Math 4233

Homework Set 6

Problem 1. Find the first three non-zero terms in each of two linearly independent solutions of

xy′′ + y′ − y = 0

valid near x = 0.

• The differential equation has a regular singular point at x = 0, so we’ll apply the Method of
Frobenius to get at least one solution as a generalized power series.

Substituting y =
∑∞
n=0 anx

n+r into the differential equation we get

0 = x

∞∑
n=0

(n+ r) (n+ r − 1) anx
n+r−2 +

∞∑
n=0

(n+ r) anx
n+r−1 −

∞∑
n=0

anx
n+r

=

∞∑
n=0

(n+ r) (n+ r − 1) anx
n+r−1 +

∞∑
n=0

(n+ r) anx
n+r−1 +

∞∑
n=0

−anxn+r

To prepare to add these generalized power series expressions, we’ll shift summation indices and
peel off initial terms
∞∑
n=0

(n+ r) (n+ r − 1) anx
n+r−1 =

∞∑
n=−1

(n+ r + 1) (n+ r) an+1x
n+r

= (r) (r − 1) a0x
r−1 +

∞∑
n=0

(n+ r + 1) (n+ r) an+1x
n+r

∞∑
n=0

(n+ r) anx
n+r−1 =

∞∑
n=−1

(n+ r + 1) an+1x
n+r

= ra0x
r−1 +

∑
n=0

(n+ r + 1) an+1x
n+r

We now replace the expressions on the left as the appear in the power series expression of the
differential equation, with the corresponding power expressions on the right:

0 = (r) (r − 1) a0x
r−1 +

∞∑
n=0

(n+ r + 1) (n+ r) an+1x
n+r

+ ra0x
r−1 +

∑
n=0

(n+ r + 1) an+1x
n+r −

∞∑
n=0

anx
n+r

or

0 = (r (r − 1) + r) a0x
r−1 +

∞∑
n=0

[(n+ r + 1) (n+ 1) an+1 + (n+ r + 1) an+1 − an]xn+r+1

= r2aox
r−1 +

∞∑
n=0

[
(n+ r + 1)

2
an+1 − an

]
xn+r

Setting the total coefficient of xr−1 (the lowest order term on the right) equal to 0 yields the
indicial equation:

r2 = 0 ⇒ r = 0

(as by hypothesis a0 6= 0). Setting the total coefficient of xn+r equal to zero (n = 0, 1, 2, 3, . . .)
yields the recursion relations:

an+1 =
an

(n+ r + 1)
2 =

an

(n+ 1)
2 .
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where we have used the solution r = 0 of the indicial equation.
• To get a first solution we can now set a0 = 1 and begin solving the recursion relations

a1 =
a0

(0 + 1)
2 = 1

a2 =
a1

(1 + 1)
2 =

1

4
=

1

22

a3 =
a2

(2 + 1)
2 =

1

4

1

9
=

1

(2 · 3)
2

a4 =
a3

(3 + 1)
2 =

1

(2 · 3 · 4)
2

In general one finds

an =
1

(n!)
2

Thus,

y1 (x) =

∞∑
n=0

anx
n+r =

∞∑
n=0

1

(n!)
2x

n

is our first solution.
• Since we only have one root of the indicial equation, the second solution will be of the form

y2 (x) = y1 (x) ln |x|+
∞∑
n=1

bnx
n+r

= y1 (x) ln |x|+
∞∑
n=1

bnx
n

We’ll plug the latter expression back into the differential equation to figure out the appropriate
choice for the coefficients bn. To ease some of the computations let us write

b (x) =

∞∑
n=1

bnx
n

We then have

y2 (x) = y1 (x) ln |x|+ b (x)

y′2 (s) = y′1 (x) ln |x|+ 1

x
y1 (x) + b′ (x)

y′′2 (x) = y′′1 (x) ln |x|+ 2

x
y′1 (x)− 1

x2
y1 (x) + b′′ (x)

So our condition on the coefficients bn is that

0 = xy′′2 + y′2 − y2

= (xy′′1 + y′1 − y1) ln |x|+ 2y′1 −
1

x
y1 + xb′′ +

1

x
y1 + b′ − b

= 0 + 2y′1 + xb′′ + b′ − b
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since y1, by construction, satisfies xy′′ + y′ − y = 0 and the ± 1
xy1 terms cancel. Thus,

0 = 2y′ + b′′ + b′ − b

=

∞∑
n=0

2nanx
n−1 +

∞∑
n=1

n (n− 1) bnx
n−1 +

∞∑
n=1

nbnx
n−1 −

∞∑
n=1

bnx
n

=

∞∑
n=−1

2 (n+ 1) an+1x
n +

∞∑
n=−1

(n+ 1) (n) bn+1x
n +

∞∑
n=0

(n+ 1) bn+1x
n −

∞∑
n=1

bnx
n

= 0 + 2a1 +

∞∑
n=1

2 (n+ 1) an+1x
n + 0 +

∞∑
n=2

n (n+ 1) bn+1x
n

+ b1 +

∞∑
n=1

(n+ 1) bn+1x
n −

∞∑
n=1

bnx
n

= (2a1 + b1) +

∞∑
n=1

[2 (n+ 1) an+1 + n (n+ 1) bn+1 + (n+ 1) bn+1 − bn]xn−1

= (2a1 + b1) +

∞∑
n=1

[
2 (n+ 1) an+1 + (n+ 1)

2
bn+1 − bn

]
xn−1

Setting the total coefficient of each distinct power of x equal to 0 yields

b1 = −2a1

bn+1 =
bn − 2 (n+ 1) an

(n+ 1)
2 , n = 1, 2, 3, . . .

Thus, now substituting in our known formulas for an,

b1 = −2a1 = −2

bn+1 =
bn

(n+ 1)
2 −

2

(n+ 1)

1

(n!)
2

We have thus have

b (x) = −2x− 3

4
x2 − 11

108
x3

and so

y2 =

(
1 + x+

1

4
x2 +

1

36
x3 + · · ·

)
ln |x|+

(
−2x− 3

4
x2 − 11

108
x3
)



4

Problem 2. A vibrating drum head obeys the following PDE

(1)
∂2φ

∂t2
− c2∇2φ = 0

where ∇2 is the 2-dimensional Laplacian

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

in polar coordinates. In this problem, you’ll use separation of variables to formulate a (fairly general)
solution and then solve a particular boundary value problem.

(a) Use Separation of Variables to reduce the PDE to a set of three weakly coupled ODEs.

• Substituting φ (r, θ, t) = c2R (r) Θ (θ)T (t) into the PDE (1) we get

RΘT ′′ − c2R′′ΘT − c2 1

r
R′ΘT − c2 1

r2
RΘ′′T = 0

or, after dividing by RΘT and moving the r and θ dependent terms to the right hand side,

1

c2
T ′′

T
=

(
R′′

R
+

1

r

R′

R
+

1

r2
Θ′′

Θ

)
Because the left hand side depends only on t while the right hand side depends only on r and θ,
both sides must equal a constant. Let’s call it −λ2. We then have

T ′′

T
= −c2λ2 ⇒ T ′′ + c2λ2T = 0

and
R′′

R
+

1

r

R′

R
+

1

r2
Θ′′

Θ
= −λ2

or

r2
R′′

R
+ r

R′

R
+ λ2r2 = −Θ′′

Θ
Again the usual Separation of Variables argument can be applied to deduce a pair of ODEs coupled
weakly by a separation constant that we’ll denote by α2 :

−Θ′′

Θ
= α2 ⇒ Θ′′ + α2Θ = 0

and

r2
R′′

R
+ r

R′

R
+ λ2r2 = α2 ⇒ r2R′′ + rR′ +

(
λ2r2 − α2

)
R = 0

• Our system of three weakly coupled ODEs is thus

T ′′ + c2λ2T = 0

Θ′′ + α2Θ = 0

r2R′′ + rR′ +
(
λ2r2 − α2

)
R = 0

(b) Use periodicity with respect to the angular variable θ to put a restriction on one of the separation
constants.

• Since θ corresponds to the angle in the xy-plane, we must have φ (r, θ, t) = φ (r, θ + 2π, t) and this
in turn requires the separation parameter α to be a integer (in fact, without loss of generality, a
non-negative integer). Setting α = n ∈ N, we then have

Θ (θ) = an cos (nθ) + bn sin (nθ)
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(c) Note that the radial factors Rn,λ (r) of the Separation of Variables solutions have a regular singularity
at r = 0. Make a change of variables r → λx to recast the differential equation as a differential equation of
the form

x2y′′ + xy′ + (x2 − n2)y = 0

This differential equation is called the Bessel equation of order n and its solutions are usually denoted by
Jn (x).

• The radial equation (at the end of part (a)) is

r2R′′ + rR′ +
(
λ2r2 − n2

)
R = 0

Let x = λr and set

y (x) = R (r (x)) = R
(x
λ

)
⇐⇒ R (r) = y (x (r)) = y (λr)

Then, by the chain rule

y′ (x) =
1

λ
R′
(x
λ

)
⇒ R′ = λy′

y′′ (x) =
1

λ2
R′′
(x
λ

)
⇒ R′′ = λ2y′′

and so

0 = r2R′′ (r) + rR′ (r) +
(
λ2 − n2

)
R (r)

⇒ r2
(
λ2y′′ (x)

)
+ r (λy′ (x)) +

(
λ2r2 − n2

)
y (x) = 0

⇒ x2y′′ (x) + xy′ (x) +
(
x2 − n2

)
y (x) = 0

• I note, at this point, that although we seem to have gotten rid of the separation parameter λ, we
must not forget about it. It will resurface later in the problem when we’ll need it not only to
establish needed boundary conditions, but also because our functions Tλ (t) depend on it.

(d). Show that the corresponding radial solutions Rn,λ (r) = Jn (λr) satisfy the orthogonality conditions

(3)

∫ b

0

Rn,λ (r)Rn,λ′ (r) rdr = 0 if λ 6= λ′

provided the functions Rn,λ (r) satisfy a boundary condition of the form

αRn,λ (b) + βRn,λ (b) = 0

(This is very similar to the Sturm-Liouville situation, but because we have only one boundary condition,
there is an additional subtlety.)

• We first note that the radial equation

r2R′′ + rR′ + λ2r2R− n2R = 0

after dividing by r can be written

rR′′ +R′ − n2

r
R = −λ2rR

or
d

dr

(
r
dR

dr

)
− n2

r
R = −λ2rR

which has the form of a Sturm-Liouville ODE

d

dr

(
p̃ (r)

dR

dr

)
+ q̃ (r)R = −λ2r̃ (r)R
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with

p̃ (r) = r , q̃ (r) = −1

r
and r̃ (r) = r

(Sorry for the confusing notation, the function p̃ (r), q̃ (r) and r̃ (r) are the analogs of the functions
p (x), q (x) and r (x) in Lecture 15; it’s just that here we’re already using r to denote the radial
coordinate.) What I aim to do here is derive an analog of Lagrange’s identity (Theorem 15.4) and
from that the orthogonality relation.

We have (essentially repeating the double integration by parts calculation appearing in the proof
of Theorem 15.4),∫ b

0

φ
d

dr

(
r
dψ

dr

)
dr = φ

(
r
dψ

dr

)∣∣∣∣b
0

−
∫ b

0

dφ

dr

(
r
dψ

dr

)
dr

= φ

(
r
dψ

dr

)∣∣∣∣b
0

− ψr
dφ

dr

∣∣∣∣b
0

+

∫ b

0

ψ

(
d

dr
r
dφ

dr

)
dr

Thus, if we set

L [ψ] =
d

dr

(
r
dψ

dr

)
− n2

r
ψ

we have∫ b

0

φL [ψ]φdr =

∫ b

0

φ

(
d

dr

(
r
dψ

dr

)
− n2

r
ψ

)
dr

=

∫ b

0

φ

(
d

dr

(
r
dψ

dr

))
dr −

∫ b

0

n2

r
φψdr

=

∫ b

0

ψ

(
d

dr
r
dφ

dr

)
dr −

∫ b

0

n2

r
φψdr + φ

(
r
dψ

dr

)∣∣∣∣b
0

− ψr
dφ

dr

∣∣∣∣b
0

=

∫ b

0

ψL [φ] dr + φ

(
r
dψ

dr

)∣∣∣∣b
0

− ψr
dφ

dr

∣∣∣∣b
0

Thus, ∫ b

0

(φL [ψ]− ψL [φ]) =

(
φ

(
r
dψ

dr

)
− ψrdφ

dr

)∣∣∣∣b
0

= bφ (b)ψ′ (b)− bψ (b)φ′ (b)

because r = 0 at the lower endpoint of integration. This formula holds for any (differentiable)
functions φ and ψ (we only used integration by parts and the form of L). Now suppose φ and ψ
obey the following sort of boundary condition at r = b.

αφ (b) + βφ′ (b) = 0

If β 6= 0 then this condition implies

φ′ (b) = −α
β
φ′ (b)

ψ (b) = −α
β
ψ′ (b)

and so

bφ (b)ψ′ (b)− bψ (b)φ′ (b) = bφ (b)

(
−α
β
ψ (b)

)
− bψ (b)

(
−α
β
φ (b)

)
= 0.

And if β = 0, the boundary condition implies φ (b) = ψ (b) = 0 and so

bφ (b)ψ′ (b)− bψ (b)φ′ (b) = 0

even more directly. We can thus conclude:
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– If φ, ψ are functions of r satisfying a boundary condition of the form

(*) αφ (b) + βφ′ (b) = 0

then ∫ b

0

(φL [ψ]− ψL [φ]) dr = 0 .

• Let us now suppose further that the functions φ (r) = Rn,λ1 (r) and ψ (r) = Rn,λ2 (r) are solutions
of the radial differential equation

L [Rλi
] = −rλ2iR ; i = 1, 2

and also satisfy the boundary condition (*). Then

0 =

∫ b

0

(φL [ψ]− ψL [φ]) dr =

∫ b

0

(∫ b

0

Rλ1

(
−λ22rRλ2

)
−Rλ2

(
−λ21rRλ1

))
dr

=
(
λ21 − λ22

) ∫ b

0

rRλ1 (r)Rλ2 (r) dr

and so

λ1 6= λ2 ⇒
∫ b

0

rRλ1 (r)Rλ2 (r) dr = 0

(e) Use the Method of Frobenius (the generalized power series technique) to find the indicial equations and
recursion relations for solutions of (2).

• Let’s now solve the differential equation

x2y′′ + xy′ +
(
x2 − n2

)
y = 0

Of course, we’ll be interested in solutions that are well-behaved at x = 0 (which corresponds to
r = 0 in the original radial problem). But x = 0 is a regular singular point for this differential
equation; therefore we’ll have to resort to generalized power series and the Method of Frobenius.

Setting

y =

∞∑
k=0

akx
k+r

we have

x2y′′ =
∞∑
k=0

(k + r) (k + r − 1) akx
k+r = r (r − 1) a0x

r + (r + 1) (r) a1x
r+1

xy′ =

∞∑
k=0

(k + r) akx
k+r = ra0x

r + (r + 1) a1x
r+1 +

∞∑
k=2

(k + r) akx
k+r

−n2y =

∞∑
k=0

−n2akxk+r = −n2a0xr − n2a1xr+1 +

∞∑
k=2

−n2akxk+r

x2y =

∞∑
k=0

akx
k+r+2 =

∞∑
k=2

ak−2x
k+r

Thus, we need

0 =
(
r (r − 1) + r − n2

)
a0x

r +
(
r (r + 1) + (r + 1)− n2

)
a1x

r+1

+

∞∑
k=2

[(
(k + r) (k + r − 1) + (k + r)− n2

)
ak + ak−2

]
xn+r

So the indicial equation is

r2 − n2 = 0 ⇒ r = ±n
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Assuming the indicial equation holds, we also have (by demanding the total coefficient of xr+1 is 0)(
(r + 1)

2 − n2
)
a1 = 0 ⇒ a1 = 0

and the recursion relations are

ak = − ak−2

(k + r)
2 − n2

, k = 2, 3, 4, . . .

(f) Find an explicit formulas for the functions Rn,λ (r), Θn (θ) and Tλ (t) corresponding to Separation of Vari-
ables solutions φn,λ (r, θ, t) = Rn,λ (r) Θn (θ)Tλ (t) to (1) that are radially symmetric (i.e., θ-independent)
and regular at r = 0.

• We have

T ′′λ + c2λ2T = 0 ⇒ Tλ (t) = αλ cos (λct) + βλ sin (λct)

and

Θ′′n + n2Θn = 0 ⇒ Θn (θ) =

{
an cos (nθ) + bn sin (nθ) n 6= 0

a0 + b0θ n = 0

The solutions Θn (θ) will be independent of θ only if n = 0 and b0 = 0.
Let’s now consider the differential equation for the radial function Rn,λ (r) in the case where

n = 0

r2R′′0,λ + rR′0,λ + λ2r2R0,λ = 0

(This is the only case we need for a radially symmetric solution of (1).) As in part (c), the solutions
of this equation that are regular at r = 0 can be expressed as

R0,λ (r) = J0 (λr)

where J0 (x) is a solution of

x2y′′ + xy′ + x2y = 0

that is regular at x = 0. Specializing the indicial equation and recursion relations found in part (e)
to the case where n = 0, we have

r2 = 0 ⇒ r = 0 (indicial equation)

a1 = 0 (condition on the coefficient of xr+1)

and

ak = − ak−2

(k + r)
2 − n2

= −ak−2
k2

, k = 2, 3, 4, . . .

Because we have only one root of the indicial equation, we’ll have one solution of the form

y1 (x) =

∞∑
k=0

anx
n+r

and a second solution of the form

y2 (x) = y1 (x) ln |x|+
∞∑
k=1

bkx
k+r

However, the second solution will not be regular at r = 0 (the log factor in the first term diverges
as r → 0). So we just need to write down explicit formulas for the coefficients an of y1 (x). From
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the recursion relations it is clear that if k = 2j is even

a2j = −a2j−2
(2j)

2

= +
1

(2j)
2

a2j−4

(2j − 2)
2

...

=
(−1)

(2j)
2

(−1)

(2j − 2)
2 · · ·

(−1)

(2)
2 a0

=
(−1)

j

22j (j!)
2 a0

while if k = 2j + 1 is odd

a2j+1 =
(−1)

(2j + 1)
2 · · ·

(−1)

(1)
2 a1 = 0

since a1 = 0.

ak =

{
(−1)

k/2 a0
2k(k!)2

if k is even

0 if k is odd

Thus,

R0,λ (r) = y1 (λr) =

∞∑
j=0

(−1)
j
a0

(2)
2j

(2j!)
2

(λr)
2j

(g). Write down a formula for the solution of (1) satisfying

φ (b, θ, t) = 0 for all θ and t

φ (r, θ, 0) = (b− r)2 for all θ and for 0 ≤ r ≤ b
∂φ

∂t
(r, θ, 0) = 0 for all θ and for all 0 ≤ r ≤ b

which corresponds to the drum head being held fixed at its perimeter, and which was initially at rest with
the prescribed initial displacement. You do not have to explicitly compute the integrals that provide the
coefficients of the series solution.

• As an ansatz for the solution to this boundary value problem, we’ll use a general linear combination
of the Separation of Variables solution found in part (f). Thus, we set

(**) φ (r, θ, t) =
∑
λ

(aλR0,λ (r) cos (cλt) + bλR0,λ (r) sin (cλt))

Here’s how one satisfies the first boundary condition. We have

R0,λ (r) = J0 (λr)

Now the Bessel functions J0 (λr) while not quite periodic, are at least quasi-periodic; meaning in
particular that J0 (x) = 0 has an infinite number of solutions. Suppose we order these solutions as
0 < x0 < x1 < x2 < · · · , then if we set

λi =
xi
b

then

R0,λi (b) = J0 (λib) = J0

(xi
b
b
)

= J0 (xi) = 0

and so the first boundary condition

φ (b, θ, t) = 0 ∀ θ, τ
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will be automatically satisfied if restrict the sum over λ in (**) to be a sum over λ0, λ1, λ2, . . . .. Note
that chosing the λi in this way also guarantees our radial functions R0,λi

(r) satisfy the orthogonality
relations ∫ b

0

R0,λi (r)R0,λj (r) rdr = 0 if i 6= j

because the functions R0,λi
(r) are solutions of the radial equation and satisfy the boundary condi-

tions of the type appearing in part (d).
• Let us now set

φ (r, θ, t) =

∞∑
i=0

R0,λi
(r) (aι cos (λict) + bi sin (λict))

and impose the last two boundary conditions on φ (r, θ, t).

(
b− r2

)
= φ (r, θ, 0) =

∞∑
i=0

aiR0,λi
(r)

Multiplying this equation by R0,λj
(r) r and integrating from 0 to b yields∫ b

0

(
b− r2

)
R0,λj

(r) rdr =
∞∑
i=0

ai

∫ b

0

R0,λi
(r)R0,λj

(r) rdr

But, in view of the orthogonality relations,∫ b

0

R0,λi
(r)R0,λj

(r) rdr =

{ ∫ b
0
R0,λj

(r)
2
rdr if i = j

0 if i 6= j

Thus the right hand side of (***) evaluates to

aj

∫ b

0

R0,λj
(r)

2
rdr

and so

aj =

∫ b
0

(
b− r2

)
R0,λj

(r) rdr∫ b
0
R0,λj

(r)
2
rdr

• The last boundary condition is

0 =
∂

∂t
φ (r, θ, 0) =

∞∑
i=0

(cλi) biR0,λi (r)

This condition is readily satisfied by chosing bi = 0 for i = 0, 1, 2, . . ..
• We conclude that the solution to the PDE/BVP is given by

φ (r, θ, t) =

∞∑
i=0

aiR0,λi
(r) cos (cλit)

where
– λ0, λ1, λ2, . . . are the roots of J0 (x) = 0
– R0,λi

(r) = J0 (λir)
– the coefficients ai are given by

ai =

∫ b
0

(
b− r2

)
R0,λi (r) rdr∫ b

0
R0,λi (r)

2
rdr


