Math 4233

Homework Set 6

Problem 1. Find the first three non-zero terms in each of two linearly independent solutions of
zy" +y —y=0
valid near z = 0.
e The differential equation has a regular singular point at z = 0, so we’ll apply the Method of

Frobenius to get at least one solution as a generalized power series.
Substituting y = >~ ; a,z™ " into the differential equation we get

o0 o0 o0
0=ux Z (n+r)y(n+r—1)a,z"™ 2+ Z (n+7)a,z" ™t — Z apz"t"
n=0 n=0 n=0
o0 (o) o0
= Z (n+r)m+r—1)a2"™ 4+ Z (n+7)a,z" ™1+ Z —anz"t"
n=0 n=0 n=0

To prepare to add these generalized power series expressions, we’ll shift summation indices and
peel off initial terms

oo o0
Z n4+7r)(n47r—1)az" ™ = Z (n+r+1)(n+r)a,1a""
n=0 n=-1

=(r)(r—1)apz" " + Z (n+r+1)(n+r)a iz

n=0
o0 o0
Z (n+7r)apz" ! = Z (n+7+1)appz™™"
n=0 n=-—1
=ragr” ' + Z (n+r+1)apqz™t"

n=0
We now replace the expressions on the left as the appear in the power series expression of the
differential equation, with the corresponding power expressions on the right:

oo
0=(r)(r—1)apz" '+ Z m+r+1)(n+7)ap 2™

n=0

o0
+ragz” ! + Z (n+r+1)a,qz™" — Z anx™tr
n=0

n=0
or

o)
0=(r(r—1)+7r)apzs" '+ Z [(n4r+1)(n+1) a1+ 0 +r+1)an —a,] "

n=0

o0
=rla,z" ' + Z [(n +r4+ 1)2 Gny1 — an} vt

n=0

1 (the lowest order term on the right) equal to 0 yields the

Setting the total coefficient of x"~
indicial equation:

=0 = r=0
(as by hypothesis ag # 0). Setting the total coefficient of z"*" equal to zero (n = 0,1,2,3,...)
yields the recursion relations:

an ap
a’I’LJrl = =
(n+r+1)° (n+1)?

1




where we have used the solution » = 0 of the indicial equation.
e To get a first solution we can now set ag = 1 and begin solving the recursion relations

alszl
(0+1)
a1 1
Q) — —— — — — —
1?4 2
ge— 2 111
e’ 49 (2.3)
as 1
ag = =

(3+1)%  (2-3-4)°

In general one finds

Thus,
oo [ee] 1
B ) = 3 e = 3 L
n=0 n=0 (n')

is our first solution.
e Since we only have one root of the indicial equation, the second solution will be of the form

y2 (x) = y1 (@) I fz| + Y boa™™"
n=1
e’}
— (@) nfa + Y boa”
n=1

We'll plug the latter expression back into the differential equation to figure out the appropriate
choice for the coefficients b,,. To ease some of the computations let us write

b(x) = Z bpx™
n=1
We then have

2 (2) = 31 () Ina] + b (2)
Y () = vh () el + g (&) + ()

2 1
yé’ () = ylll (z)In|z| + Eyll (x) — ﬁyl (2) + b (z)
So our condition on the coefficients b, is that

0=uayy +ys— Yo
1 1
= (ey + 91 —yu) lnfal + 291 — —yr + @b+ —yr + 0 b
=0+2y; +ab" +b —b



since y1, by construction, satisfies zy” + vy —y = 0 and the j:%yl terms cancel. Thus,

0=2y +b"+b —b

o0 o0 o0
222nanx"_1+2n (n—1)byz™~ 1+anx anx”
n=0 n=1 n=1
o0 o0
= Z 2(n+1)apyr1a™ + Z n+1)(n)bypia™ + Z Ybppra"™ — Z bz
n=1

n=-—1 n=-—1

o0
=O—|—2a1—I—ZQ(H—I—1)an+1x"+0+2n(n+1)bn+1x"
n=1 n=2

—|—b1—|—z (n+1)byp12” be

n=1

= (2a1 +b1) + Z (n+ D apt1+nn+1)byr1 + (n+1)byy1 — by 2t

= (2a1 +b1) + Z [2 (n+1)apt1 +(n+ 1)2 bnt1 — bn} 2!

n=1
Setting the total coefficient of each distinct power of x equal to 0 yields
b1 = 72(11
by —2 Dan
brsr = ("+2)“ . n=1,23,...
(n+1)

Thus, now substituting in our known formulas for a,,,
b1 = —2&1 = -2

We have thus have

* 1 1 3 11
=(1 o BN SR B | 9y — Zp? g3
Y2 ( +r+ "+ —z° + >n|x|+< T =% 108~
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Problem 2. A vibrating drum head obeys the following PDE
0%¢
(1) -

5z AV3ip=0

where V2 is the 2-dimensional Laplacian

2 10 1 02

o " rar 2og

in polar coordinates. In this problem, you’ll use separation of variables to formulate a (fairly general)
solution and then solve a particular boundary value problem.

V? =

(a) Use Separation of Variables to reduce the PDE to a set of three weakly coupled ODEs.

e Substituting ¢ (r,0,t) = 2R () © (§) T (t) into the PDE (1) we get
1 1
ROT" — *R"OT — *~R'OT — > RO"T =0
r r
or, after dividing by ROT and moving the r and 6 dependent terms to the right hand side,
1 T// R// 1 R/ 1 @//
§T<R+TR+ﬂ®>
Because the left hand side depends only on ¢ while the right hand side depends only on 7 and 6,
both sides must equal a constant. Let’s call it —A\%2. We then have

T//
T=oN = T4 ENT =0
and
Riﬁ_i_li/_i_i@i”_ )\2
R rR 120
or

/! / "

R
27 e 22:—7
r e A 5

Again the usual Separation of Variables argument can be applied to deduce a pair of ODEs coupled
weakly by a separation constant that we’ll denote by a? :

@//
-y =a? = 0"+a°0=0

and

ZR// R 2,2 2 2 pIt / 2.2 2
rerrEJr)\r:a = ‘R +rR+()\r—a)R:0

e Our system of three weakly coupled ODEs is thus
T+ ENT =0
0" +a’0 =0
rPR"+rR + (N1’ —a®)R=0

(b) Use periodicity with respect to the angular variable 6 to put a restriction on one of the separation
constants.

e Since 6 corresponds to the angle in the zy-plane, we must have ¢ (r,60,t) = ¢ (r,0 + 27,t) and this
in turn requires the separation parameter « to be a integer (in fact, without loss of generality, a
non-negative integer). Setting o = n € N, we then have

O (0) = ay, cos (nd) + by, sin (nd)
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(c) Note that the radial factors R, » () of the Separation of Variables solutions have a regular singularity
at 7 = 0. Make a change of variables r — Az to recast the differential equation as a differential equation of
the form

l_2y// —|—xy’ 4 (56‘2 _ n2)y =0

This differential equation is called the Bessel equation of order n and its solutions are usually denoted by

I ().

e The radial equation (at the end of part (a)) is
r’R"+rR + (XM —n*) R=0
Let z = Ar and set
y@)=Ro@)=R(F) < R@)=ya@)=y0n
Then, by the chain rule

y' (z) = lR’ (E) = R =N

A A
1
y// (x) — pR// (%) = R// — A2y//

and so
0=7r*R"(r)+rR (r)+ (\* = n®) R(r)
= 7 (A2y" () +r (N () + (/\27“2 — nz) y(z) =0
= 2%y (@) + 2y (2)+ (2> —n?)y(z) =0

e [ note, at this point, that although we seem to have gotten rid of the separation parameter A\, we
must not forget about it. It will resurface later in the problem when we’ll need it not only to
establish needed boundary conditions, but also because our functions T’ (¢) depend on it.

(d). Show that the corresponding radial solutions R,, » (1) = J, (Ar) satisfy the orthogonality conditions

b
(3) /0 Rux(r) Ry (r)rdr=0  if X#£ N

provided the functions R, » (r) satisfy a boundary condition of the form
aRm)\ (b) + 5Rn))\ (b) =0

(This is very similar to the Sturm-Liouville situation, but because we have only one boundary condition,
there is an additional subtlety.)

e We first note that the radial equation
R’ +rR + Xr*R—n*R=0

after dividing by r can be written

2
rR" + R — %R — AR

2
d ( dR) " R= %R
T

or

dr " dr
which has the form of a Sturm-Liouville ODE

dii (5(7“) C(;f) L i) R=-AF(r)R



with
1 .
p(r)y=r , qg(r)=—-- and r(r)=r
T
(Sorry for the confusing notation, the function p(r), ¢ (r) and 7 (r) are the analogs of the functions
p(x), ¢(x) and 7 (x) in Lecture 15; it’s just that here we're already using r to denote the radial
coordinate.) What I aim to do here is derive an analog of Lagrange’s identity (Theorem 15.4) and

from that the orthogonality relation.
We have (essentially repeating the double integration by parts calculation appearing in the proof

of Theorem 15.4),
d¢
0 /0 dr ( dr) d

b dip di
[oa (43 )ar=o (),
b do |’ d do
! /ow(dr’"dr)d*

— o W
”(Tw) ~ar

dr

Thus, if we set

we have
b b d d 2
meﬂw%aé¢(w(qﬁ)—ﬁw)m
b d dw bn2
-/ ¢(dr (M«))‘”‘/o e
ot d do b2 v\ |” do
foGerte ) o= [ v W(’"UOWO
L r .

Thus,

[ ont-vein = (s(+5) - ure)|
= b0 (0) 0! ()~ bu () (1)

because r = 0 at the lower endpoint of integration. This formula holds for any (differentiable)
functions ¢ and 1 (we only used integration by parts and the form of L). Now suppose ¢ and v
obey the following sort of boundary condition at r = b.

ag (b) + B¢’ (b) =
If B # 0 then this condition implies

wwz—%'@
Y (b) = —%w’ (b)

and so
bmwww>b¢@ww>bww(;w@)zww(;&wﬂ
And if 8 = 0, the boundary condition implies ¢ (b) = ¢ (b) = 0 and so
b6 (B) ¥ (b) — bub (8) & (B) = 0

even more directly. We can thus conclude:



— If ¢, are functions of r satisfying a boundary condition of the form
(*) a (b) + B¢’ (b) =0
then
b
[ oriw-vLisnar=o
0

o Let us now suppose further that the functions ¢ (r) = R, x, (r) and ¢ (1) = Ry, », (r) are solutions
of the radial differential equation

L[Ry\]=-rNR ; i=12

and also satisfy the boundary condition (*). Then

b b b
0 :/o (AL [] — L [¢]) dr :/0 (/0 Ry, (=A37R»,) — Ry, (—>\17"RA1)> dr

b
= (A - \j) / rRy, (1) Ry, (r)dr
0
and so

b
)\175)\2 = /TR,\l(’r‘)R)\Z(T)d’I“ZO
0

(e) Use the Method of Frobenius (the generalized power series technique) to find the indicial equations and
recursion relations for solutions of (2).

e Let’s now solve the differential equation
I'Qy" +xy’ + (1,2 o n2) y= 0
Of course, we'll be interested in solutions that are well-behaved at © = 0 (which corresponds to

r = 0 in the original radial problem). But & = 0 is a regular singular point for this differential
equation; therefore we’ll have to resort to generalized power series and the Method of Frobenius.

Setting
o0
k=0
we have

2y =3 (k+7) (k+7 — 1) ara™ = v (r = D) aga” + (r +1) (r) ara”™!
k=

%) %)
xy/ — Z (k + 'r) akgjk+r = ’I‘aol‘r “+ (’I“ —+ 1) CL1IT+1 —+ Z (k + T) aka:lHT

k=0 k=2
o0 o0
—n?y = g —nlapz™t = —nagx” — a4+ g —nlapzttT
k=0 k=2
oo o0
1’2]/ _ § :akxk+r+2 _ § :ak72xk+r
k=0 k=2

Thus, we need

0=(r(r—1)+r—n*) apz" + (r(r+1)+ (r+1) —n?) arz"*!
+Z[((k+r)(k;+r—1)+(k;+r)—nQ)ak—I—ak_g]x"“
k=2

So the indicial equation is
r?—n?’=0 = r=4+n



Assuming the indicial equation holds, we also have (by demanding the total coefficient of z"* is 0)
((r+1)2—n2)a1 =0 = a=0

and the recursion relations are

ap=-——r2 k=234,
(k4 1) —n?

(f) Find an explicit formulas for the functions Ry, » (1), ©,, (6) and T} (¢) corresponding to Separation of Vari-
ables solutions ¢, x (r,0,t) = Ry (1) O, (0) T ( ) to (1) that are radially symmetric (i.e., f-independent)
and regular at r = 0.

e We have
UV ENT =0 = Th(t) = axcos(Act) + By sin (Act)
and

ay, cos (nB) 4+ by sin (nf) n #0

" 2 _ —
O +n%0,=0 = @n(e)_{ a4 byl 00

The solutions O, (§) will be independent of 6 only if n = 0 and by = 0.
Let’s now consider the differential equation for the radial function R, x () in the case where
n=20

R\ + 1Ry, + A r?Ro =0

(This is the only case we need for a radially symmetric solution of (1).) As in part (c), the solutions
of this equation that are regular at » = 0 can be expressed as

Ro))\ (7”) = JO ()\7“)

where Jp (z) is a solution of

22y +ay + 2%y =0
that is regular at = 0. Specializing the indicial equation and recursion relations found in part (e)
to the case where n = 0, we have

=0 = r=0 (indicial equation)
a1 =0 (condition on the coefficient of :L'T+1)
and
Af—2 Ap—2
ar = — S . k=2,3.4,...
(k+1r)* —n? k2

Because we have only one root of the indicial equation, we’ll have one solution of the form

)
= Z anx™ "
k=0
and a second solution of the form
oo
Y2 () = y1 (z) In [z + Z bt
k=1

However, the second solution will not be regular at » = 0 (the log factor in the first term diverges
as r — 0). So we just need to write down explicit formulas for the coefficients a,, of y; (). From



the recursion relations it is clear that if k = 25 is even
_%25-2

ag; = -
T(2)?

while if k = 2j + 1 is odd
(=1 (=1

a2.1: “ee alzo
T2+ ()P

since a; = 0.

2k (k1)2

o — (fl)k/2 o if k is even
b 0 if k is odd

Thus,

(1) ag

T B0 Ay
2 Y

Rox (r) =y1 (M) =

. Write down a formula for the solution o satistyin,
(g). Write d fi la for the solution of (1) satisfying
o (b,0,t) =0 for all 8 and ¢t
¢ (r,0,0) = (b—1r)? for all @ and for 0 < r < b

%(T,@,O):O for all @ and for all 0 <r <b

which corresponds to the drum head being held fixed at its perimeter, and which was initially at rest with
the prescribed initial displacement. You do not have to explicitly compute the integrals that provide the
coefficients of the series solution.

e As an ansatz for the solution to this boundary value problem, we’ll use a general linear combination
of the Separation of Variables solution found in part (f). Thus, we set

(**) o (r,0,t) = Z (axRo,x (1) cos (cAt) + baRo x () sin (cAt))
A

Here’s how one satisfies the first boundary condition. We have
Ro))\ (7”) = JO ()\7“)

Now the Bessel functions Jy (Ar) while not quite periodic, are at least quasi-periodic; meaning in
particular that Jy (2) = 0 has an infinite number of solutions. Suppose we order these solutions as
0<xp <z <2 <---, then if we set

then
T
Ro.x, (b) = Jo (Asb) = Jo (?”> — Jo(x) =0

and so the first boundary condition

b(b,0,)=0 Vo,r
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will be automatically satisfied if restrict the sum over A in (**) to be a sum over Ag, A1, Ag, .. ... Note
that chosing the \; in this way also guarantees our radial functions Ry », (r) satisfy the orthogonality

relations )

Rox, (1) Rox, (r)rdr =0 if i#j
0
because the functions Ry, (r) are solutions of the radial equation and satisfy the boundary condi-
tions of the type appearing in part (d).
Let us now set

(r,0,t) Z Rz, () (@, cos (Ajet) + b; sin (A;et))

and impose the last two boundary conditions on ¢ (r, 6,t).

(b—r2): (r,0,0) ZaZRoA

Multiplying this equation by Ro x; () r and mtegratlng from 0 to b yields
b o0 b
/ (b—17%) Ro,, (r)rdr = Zai/ Rox, () Ro,x, (r)rdr
0 0 /o
But, in view of the orthogonality relations,
b b 2 o
Rox, (r) rdr ifi=j
Ro.x, (1) Ro x, dr =4 Jo B
/0 o ) Boy () { 0 if i # j
Thus the right hand side of (***) evaluates to

b
aj/o Ry 5, (r)2 rdr

_ Jy (b=7*) Ro, (r)rdr
fob Rox, (7“)2 rdr

and so

The last boundary condition is

oo

0
= &qﬁ (T7 97 O) = ; (C)\i) biRO,Ai (T‘)
This condition is readily satisfied by chosing b; =0 for i = 0,1,2,....
We conclude that the solution to the PDE/BVP is given by

(r,0,t) ZaZRO a; (1) cos (eAt)

where
— Ao, A1, Ao, . .. are the roots of Jy () =0
- ROJ\@ (7") = Jo ()\z’/’)
— the coefficients a; are given by
Jo (b=72) Rox, (r) rdr
fé) Ro.», (7")2 rdr




