Math 4233

Homework Set 4

1. For each of the following PDEs, try using the method of separation of variables to replace the PDE by
a pair of ODEs.

(a) Uy +ur =0

e Setting
u(z,t) =X (2)Y (¢)
and plugging into the PDE we get

eX" ()Y (1) + X ()Y () =0
Dividing this equation by X (2)Y (¢) we get

X"(z) Y1)
X(x) Y@

X

X" (x) Y (t)

X T Y
Since the right hand side depends only on z and the left hand side depends only on t, we can
conclude that both sides must be equal to a constant independent of x and ¢t. We thus obtain

X'@) o Y

X 7T YO
which leads to the following pair of ordinary differential equations
X" =CX
Y =-CY

(b) Upy + Uzt +us =0

e Setting u (z,t) = X () Y (t), plugging into the PDE and then dividing by X (z)Y (¢) yields

X" (x) N X' ()Y (1) N Y

X (z) XY y =0

This equation cannot be separated further.
(¢) tugy + zus =0

e Setting u (z,t) = X (z)Y (¢), plugging into the PDE and then dividing by X ()Y (t) yields

X" (z) Y
i
X 'Y
If we now divide both sides by tz we get
X '
@,V _,
zX (z) tY
or
X" (x) Y




Since the right hand side depends only on z and the left hand side depends only on t, we can
conclude that both sides must be equal to a constant independent of z and t. We thus obtain

X'@) Y
xX () ty
which leads to the following pair of ODEs:
X" =CzX
Y = -Cty

(d) [p (@) uo], =7 (2) unr = 0
e Setting u (z,t) = X (z)Y (¢), plugging into the PDE we get

0= %[P(a?)X'(x)Y(t)] —7(2) X (2)Y (1)

=Y(t)dilz [p (2) X' (@)] =7 (2) X (5) Y (2)

Dividing both sides by and then dividing by r (z) X ()

1 d , Y@ _
W@[ﬂ(@){(m)] Y ) 0

t

—~

2.
@
@,
o
92}

Y
i

or B
1 d Y (t)
S X' =7
T X @) dz PO X @ =575
Since the right hand side depends only on z and the left hand side depends only on t, we can
conclude that both sides must be equal to a constant independent of z and t. We thus obtain

1 d [p(x)X’(x)]:C:Y_(t)

r(z) X (z) d Y (t)
which leads to the following pair of ODEs:
d
= P (@) X' (@)] = Cr (2) X (2)

Y (t) = CY (t)

(Remark: the first differential equation is of Sturm-Liouville type - which we shall be studying
shortly.)

(€) Upy + Uyy +Tu=0

e Setting u (z,t) = X () Y (¢), plugging into the PDE we get
X"(@)Y )+ X ()Y () +2X ()Y (t) =0
Dividing this equation by X (x)Y (¢) yields

X//(.’E) Y—(t) .
X v "

or
X" (x) B Y(t)
X@ T Y®
Since the right hand side depends only on z and the left hand side depends only on t, we can
conclude that both sides must be equal to a constant independent of x and t. We thus obtain
X" (z) Y (t)

X () +£E:C:*Y—(ﬁ)




which leads to the following pair of ODEs:
X'"+zX =0CX
Y =-CvY

2. Find the solution of the following heat conduction problem

(2a) 4uy — Uy =0 , 0O<z<2 , t>0
(2b) w(0,¢) =0

(2¢) u(2,t) =0

(2d) u (x,0) = 2sin (l;) —sin (7x) 4 4sin (27z)

e We first use separation of variables to find a suitable family of solutions of the heat equation
satisfying the first two boundary conditions. Thus, we look for functions of the form

(2e) u(z,t) =X ()Y (¢)
that will satisfy (2a), (2b) and (2c¢). Substituting (2e) into (2a) and dividing the result by X (z)Y (¢)
we obtain .
Yy X”
4 =2
Y X

Since the left hand side does not depend on z and the right hand side does not depend on t, we
conclude that both sides must be equal to a constant, which we shall denote by —\?. We are thus
led to

X"=-NX = X(z)=Asin(\z+9)
/\2

Y=-3Y — Y@= Ce3rt

Imposing the boundary conditions at = = 0 on the expression (2e) we find

0=u(0,t) = ACe T'sin(§) = 6=0 (for non-trivial solutions)
Taking then § = 0 and imposing the boundary condition at x = 2 we find

0=wu(2,t) = ACe™ *Ftgin 2\) = A= n_27r , n=12,... (for non-trivial solutions)
Thus, any function of the form
On (z,t) :ef(n_;)ztsin (%x) , n=12...

will satisfy equations (2a) - (2¢). Moreover, any linear combination of the functions ¢,, will continue
to satisfy equations (2a) - (2¢). We thus set

(2f) Zane 1)t gin (n—;z)

and try to choose the coefficients a,, so that the final boundary condition (2d) is satisfied. Plugging
(2f) into (2d) we obtain

o
2sin (L;) — sin (7mz) + 4sin (27z) Z ane” 1 (%) in (%x) = nz ayp, Sin (n—;x)

From this we conclude that the coefficients a,, should coincide with coefficients of sin (%ac) in the
Fourier-sine expansion of the function on the right hand side on the interval [0,2]. Thus, we set

apn, = %/L (2 sin (%) — sin (7x) 4+ 4sin (27r:1:)) sin (nL ) dx
0

= /02 (2 sin (L;) — sin (7z) + 4sin (27?33)) sin (n2 ) dx



By the orthogonality properties of the Fourier-sine functions

%/Lsin(%aOsin(%x)dx:{ (1) EZ;Z
0

we find
2 ifn=1
o — -1 ifn=2
" 4 ifn=4
0  otherwise
Thus,

2 7‘_22
u(z,t) = 2e” 8 'sin (—x) —e T 'sin(rx) + de™™ sin (27x)

3. Find the solution of

dup — Ugpe = 0 , O<ax<2 , t>0
u (0,t) =2
u(2,t)=-2
u (z,0) = 2 cos (mx)

e Because of the non-homogeneous boundary conditions at « = 0 and =z = 2, we first construct a
time-independent (steady-state) solution that will satisfy these boundary conditions. Suppose
u(x,t) = ugs ()
Plugging this into the heat equation we find

0 0 dPugg
d—ugs (x) — 52 Uss () =0 = 122

=0
ot
— ugs=Ar+ B

Imposing the boundary conditions at =0 and = = 2

ugs (0) = 2 -
Us (2) = —2 } =  Ugs = —20 + 2
Now we set
(*) u(@,t) = uss () + 7 (2,1)

where 7 (z,t) is an auxiliary function corresponding to the (time-dependent) discrepancy between
the actual solution of the given boundary value problem and the steady-state solution uss. Imposing
the boundary conditions on u (x,t) we find

2 =u(0,t) = uss (0) + 7(0,¢) =2+ 7(0,1)
= 7(0,t) =
2= u(2,t) = uss (2) +7(2,8) = —2 — 7 (2,1)
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Since —65? =0= 88553,

when we plug (*) into the heat equation for u (z,t), we find

or o _

ot 02



t

In other words, 7 (z,t) must satisfy the following boundary value problem:

or 0%r
Yot o Y
7(0,t) =0
7(2,t) =0

7(x,0) = —2x + 2+ 2cos Tz

In the previous problem we worked out the solution to a similar system, the only difference
being the function that appears on the right hand side of the last boundary conditions. As before,
separation of variables and boundary conditions at z = 0 and z = 2 will lead us to the following
ansatz for the solution of the BVP for 7 (z, 1)

(o)
n
7(z,t) = Z ay, sin (gaj)
n=1
If we now impose the boundary condition at ¢ = 0 we see

(oo}
nm
22 +2+2 =Y ausin (Sra) d
x4+ 2+ 2cos (mx) n:1ansm 5 %) dz

To determine the coefficients a,, we multiply both sides by sin (%x) and integrate from x = 0

tox =2
2 e e} 2 [e’s}
/0 (2 — 22 4 2 cos (7z)) sin (%x) do = ;/0 an, sin (%x) sin (%x) dx = ; nOm.n = Gm
We just need to compute
2
Ay, = / (2 — 2z + 2cos (7)) sin (%x) dx
0
Now
2 . .
. 7 mm 4 0 if m is even
/o 28111(—1’) de =2 (—cos (7) :1:> o %(1fcos(m7r)) = { 5 itmis odd
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e [ ot ) o= Lo (4 25)5) - (4 251
cos (mx)sin (—zx)de = —————cos((n+ —)z) —c———=cos((—7+— )=z
0 2 27+ 5E 2 2 —m+ &HE 2 0

B 2m 1) = 0 if m is even
= o mz—g (costmm = 1)) = —— i m s odd
Thus,
B # if m is even
4. Show that the wave equation
) Ut — AP Uypy = 0

can be reduced to the form
”LLgn =0
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by a change for variables £ = x — at, n = © 4+ at. Conclude that the any solution of (*) can be written as

(**)

u(z,t) = ¢ (x —at) + 9 (z + at)

e We have

o —les 1
§:x at . x_—ﬁ in
n=x+at t=

and we have

0 o0& 0  oOn 0 0 0
Oz~ OwdE  dwdn O oy
0 060 0no 0 0
o~ oo Taton - ‘e oy
and so
0? 0] 0] 0 0 5 02 , 02 5 02
ol <aa—5 +aa—n) <a8_§ +aa—n> =a 6—527211 era 8—772
T (2.2)(2.0) L O
Ox? o0& On o0& On 0&2 ono¢  on?
Thus,
2 2 2 2 2 2 2 2
(7~ '5) v= (0 5 * 57~ (5 * 20 * 37 ) ¥
2 07
- (-4 5
and so

Ut — P Ugy =0 = —4a2u§,7 =0 = ug=0

A priori a solution of ug, = 0 could consist of terms ¢ (£) that depend only on &, terms 1 (1) that
depend only on 7 and terms o (£,7) that depend on both £ and 7;

uw(én) =0 ) +¢n)+an)

The condition u¢, = 0 then implies that
0 0 g 0
0= —=— =0+0+ —=——
7€ 71 (@) +¢(m)+o(&mn)=0+0+ o€ ana(ﬁ,n)
by assumption each term of o (£, ) depends non-trivially on both £ and 7, and so unless o (£,17) = 0,
we’ll have ug, # 0. We conclude that any solution of the wave equation must be of the form

u(&n) =¢ ) +¢(n) =¢(x—at)+¢(z+at)

Note also that the graph of a function f (x — d) as a function of = looks exactly the graph of f ()
translated a distance d down the z-axis.

y = f(x) ,- _ fﬁ"a y = f(x-d)

J.-" | % ) -1\

Because of this for fixed ¢ the graph of ¢ (x — at) will look like the graph of ¢ (z) translated a distance
at down the z-axis. Letting ¢ now vary, one can interprete the graph of the solution ¢ (z — at) as
corresponding to a certain wave packet of shape y = ¢ (z) propagating down the z-axis with velocity
a (since d = at will be the graph’s displacement at time t). Similarly, the graph of the solution
¥ (x4 at) can be interpreted as a certain wave packet of shape y = v (x) propagating down the
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z-axis in the opposite direction. Thus, via (**) every solution of the wave equation can be thought
of as the superposition of two wave packets one moving to the right and one moving to the left.
5. Find the solution of Laplace’s equation
Ugy + Uyy =0
satisfying the boundary conditions

u(z,00)=0 , u(z,b)=g(x)
u(0,y)=0 , wu(a,y) =0

o Setting u (z,y) = X (z)Y (y) and separating variables we quickly obtain
X"(z) = - X (r) = X(z)=Asin(\z+0)
Y"(y) =AY (y) = Y (y)=cisinh(\y)+ czcosh (\y)

(We choose the separation constant to be a negative number —\? with a little bit of foresight. If
we had chosen it to be positive, the functions X (x) would not be sinusoidal functions of x and we
would not be able to easily satisfy the boundary conditions at = 0 and = = a.) The boundary
conditions at x = 0 require

0=u(0,y))=X0)Y(y) = X(0)=0 = Asin(f)=0 = =0
and then taking § = 0 and imposing the boundary condition at x = a we find
O=u(a,y)=X@Y(y) = X(a=0 = Asin(a+0)=0 = A= % ,m=1,23,...
The boundary condition at y = 0 require

0=u(z,0)=X(2)Y(0) = Y(0)=0 = =0

. (/nT . nmw
sin (—x) sinh (—y)
a a

will satisfy Laplace’s equation and three of the boundary conditions. So also will any linear combi-
nation of these functions. So we set

u(z,y) = i Cy, Sin (na—ﬂ-m) sinh (%y)

n=1

and so any function of the form

and impose the last boundary condition
> nmw nm
* SIS CARCD
* g(x) =u(x,b) nZIC sin ( —a ) sinh { —

On the other hand, so long as g (z) is continuous and differntiable, it will have a Fourier-sine
expansion of the form

= 2 [ nw
: Sem(E) [ ()
(**) g(z) ; sin ( —-z , 2/ g (z) sin %) dz
Comparing the coefficients of (linearly independent functions) sin (%ac) on the right hand sides of
(*) and (**) we conclude
b,, = ¢, sinh (mb>
a

or
b 2

“ . /nm
7 Sinh (Z55)  asinh (250 /0 g (@)sin (e do
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6. Express the 2-dimensional Laplace equation
Ugg + Uyy =0

in terms of polar coordinates (r,6) and use separation of variables to reduce it to the solution of a pair of
ordinary differential equations.

e We have
JJ:TC.OSG — r:,/;f21+y2
y =rsinf 0 =tan™" (y/x)

According to the multi-variable chain rule

o _oro oo
dr Oz Or 0Oz 00
b _ro o
Oy Oyor Oyl
Now
or x _rcos(f)
i NCERT =— " =cos )
or y _rsin(0) |
3 NGRS =—0 = sin (6)
00 Yy rsin () 1.
%:_xQ—i—yQ:_ - :—;sm(Q)
00 x rcos(f) 1
3_y:x2+y2: - = —cos ()
and so
0 o 1. 0
2 —cos(ﬂ)a - ;sm(&)%
0 . 0 0
o —sm(@)a +;cos(0)%
We then have
0 0 1 0 1 0
(&) <%> = (COS (0) E — ; Sin (9) %> <COS (0) 8_ — ; sin (0) —9
0 0 0 1 0
= (cos ) E) ((205 () ) (cos @ E) <; sin (6) %>
1. 0 0 1 0 0
- <; sin (6) 8_> <COb (9) E) + (; sin (6) %) <— sin (6) %>
o? o (1\ 0
a2 (g 9 . R e
= cos” () z— — cos (0) sin (0) 5 <r) 50
0

0 (-%+17)
(a0 s 5) 2

9y 9
26 ) 9

1.
—;sm(@)

+ %2 sin () (cos (0) + sin (0)



and

(2)(8)- (w0 o) (s ono )

0? o [1\ O
= sin GW —i—schosHa (T) 20

1 0 . 0o 1 0 0
—|—;c059 (% sm9) o +T—QCOS(9) <% cos@) 20

2
= sin? 98— + sin 6 cos (—% + = 19 ) 9

or? ror ) 00
1 ( ) 0
+ —cosf | cos (#) +sin (0 —
r or
1 0\ 0
—I—T—zcos(ﬁ) (—sln( ) + cos (0) 9)
Thus,
a0 00\ . o 5\ 07 1 10\ 0
(333 Oz + 0y 3y) = (3070 +cos™0) or? +0 < =l rar) 06
1 1

T

r2
82
= o2
0? +1 0 _’_ia_Q
“orz v or | r2o6?

Laplace’s equation in polar coordinates is thus

92 10 1 062
k% — e —F+ == |u=
) <8r2+rar+r2892)u 0

909 1 02

+ - L (sin2 0 + cos? 9) (sin® 0 + cos? 9) 32

— = sin (0) (—sin (6) + cos (0) 3) 83 + = cosh (cos (0) + sin (6) 2

0
+ L sin (6) <cos (0) + sin () g) 9 + rizcos (9) < sin (6) + cos (6)

o We’ll now try separation of variables for Laplace’s equation in polar coordinates. Setting

u(r,0)=R(r)T ()

>k>(<>|<)

and plugging into ( we get

1 1
R'T+-TR + —QRT” =0
r r
Dividing through by RT we get
R// R/ 1 T//
RIWRTET
or which after multiplying by 72 leads to
9 R// R/ T/I
"RTTRTTT
Setting the separation constant equal to a constant A\?> we arrive at
r’R’ +rR = \R
T" = —-\*T

=0



