
Math 4233

Homework Set 4

1. For each of the following PDEs, try using the method of separation of variables to replace the PDE by

a pair of ODEs.

(a)  +  = 0

• Setting
 ( ) =  () ()

and plugging into the PDE we get

 00 () () + () ̇ () = 0

Dividing this equation by  () () we get


 00 ()
 ()

+
̇ ()

 ()
= 0

or


 00 ()
 ()

= − ̇ ()
 ()

Since the right hand side depends only on  and the left hand side depends only on , we can

conclude that both sides must be equal to a constant independent of  and . We thus obtain


 00 ()
 ()

=  = − ̇ ()
 ()

which leads to the following pair of ordinary differential equations

 00 = 

̇ = −

(b)  +  +  = 0

• Setting  ( ) =  () (), plugging into the PDE and then dividing by  () () yields

 00 ()
 ()

+
 0 () ̇ ()


+

̇


= 0

This equation cannot be separated further.

(c)  +  = 0

• Setting  ( ) =  () (), plugging into the PDE and then dividing by  () () yields


 00 ()
 ()

+ 
̇


= 0

If we now divide both sides by  we get

 00 ()
 ()

+
̇


= 0

or

 00 ()
 ()

= − ̇


1



2

Since the right hand side depends only on  and the left hand side depends only on , we can

conclude that both sides must be equal to a constant independent of  and . We thus obtain

 00 ()
 ()

=  = − ̇



which leads to the following pair of ODEs:

 00 = 

̇ = −

(d) [ ()] −  () = 0

• Setting  ( ) =  () (), plugging into the PDE we get

0 =



[ () 0 () ()]−  () () ̈ ()

=  ()



[ () 0 ()]−  () () ̈ ()

Dividing both sides by and then dividing by  () () () yields

1

 () ()




[ () 0 ()]− ̈ ()

 ()
= 0

or
1

 () ()




[ () 0 ()] =

̈ ()

 ()

Since the right hand side depends only on  and the left hand side depends only on , we can

conclude that both sides must be equal to a constant independent of  and . We thus obtain

1

 () ()




[ () 0 ()] =  =

̈ ()

 ()

which leads to the following pair of ODEs:




[ () 0 ()] =  () ()

̈ () =  ()

(Remark: the first differential equation is of Sturm-Liouville type - which we shall be studying

shortly.)

(e)  +  +  = 0

• Setting  ( ) =  () (), plugging into the PDE we get

 00 () () + () ̈ () +  () () = 0

Dividing this equation by  () () yields

 00 ()
 ()

+
̈ ()

 ()
+  = 0

or
 00 ()
 ()

+  = − ̈ ()
 ()

Since the right hand side depends only on  and the left hand side depends only on , we can

conclude that both sides must be equal to a constant independent of  and . We thus obtain

 00 ()
 ()

+  =  = − ̈ ()
 ()
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which leads to the following pair of ODEs:

 00 +  = 

̈ = −

2. Find the solution of the following heat conduction problem

4 −  = 0  0    2    0(2a)

 (0 ) = 0(2b)

 (2 ) = 0(2c)

 ( 0) = 2 sin
³
2

´
− sin () + 4 sin (2)(2d)

• We first use separation of variables to find a suitable family of solutions of the heat equation
satisfying the first two boundary conditions. Thus, we look for functions of the form

(2e)  ( ) =  () ()

that will satisfy (2a), (2b) and (2c). Substituting (2e) into (2a) and dividing the result by  () ()

we obtain

4
̇


=

 00


Since the left hand side does not depend on  and the right hand side does not depend on , we

conclude that both sides must be equal to a constant, which we shall denote by −2. We are thus
led to

 00 = −2 =⇒  () =  sin (+ )

̇ = −
2

4
 =⇒  () = −

2

4


Imposing the boundary conditions at  = 0 on the expression (2e) we find

0 =  (0 ) = −
2

4
 sin () =⇒  = 0 (for non-trivial solutions)

Taking then  = 0 and imposing the boundary condition at  = 2 we find

0 =  (2 ) = −
2

4
 sin (2) =⇒  =



2
  = 1 2    (for non-trivial solutions)

Thus, any function of the form

 ( ) = −(

2 )

2
 sin

³
2

´

  = 1 2   

will satisfy equations (2a) - (2c). Moreover, any linear combination of the functions  will continue

to satisfy equations (2a) - (2c). We thus set

(2f)  ( ) =

∞X
=1


− 1
4 (


2 )

2
 sin

³
2

´

and try to choose the coefficients  so that the final boundary condition (2d) is satisfied. Plugging

(2f) into (2d) we obtain

2 sin
³
2

´
− sin () + 4 sin (2) =

∞X
=1


− 1
4(


2 )

2
0 sin

³
2

´
=

∞X
=1

 sin
³
2

´

From this we conclude that the coefficients  should coincide with coefficients of sin
¡

2

¢
in the

Fourier-sine expansion of the function on the right hand side on the interval [0 2]. Thus, we set

 =
2



Z 

0

³
2 sin

³
2

´
− sin () + 4 sin (2)

´
sin
³


´


=

Z 2

0

³
2 sin

³
2

´
− sin () + 4 sin (2)

´
sin
³
2

´
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By the orthogonality properties of the Fourier-sine functions

2



Z 

0

sin
³



´
sin
³


´
 =

½
1 if  = 

0 if  6= 

we find

 =

⎧⎪⎪⎨⎪⎪⎩
2 if  = 1

−1 if  = 2

4 if  = 4

0 otherwise

Thus,

 ( ) = 2−
2

8
 sin

³
2

´
− −

2

4

2
 sin () + 4−

2 sin (2)

3. Find the solution of

4 −  = 0  0    2    0

 (0 ) = 2

 (2 ) = −2
 ( 0) = 2 cos ()

• Because of the non-homogeneous boundary conditions at  = 0 and  = 2, we first construct a

time-independent (steady-state) solution that will satisfy these boundary conditions. Suppose

 ( ) =  ()

Plugging this into the heat equation we find

4



 ()− 2

2
 () = 0 =⇒ 2

2
= 0

=⇒  = +

Imposing the boundary conditions at  = 0 and  = 2

 (0) = 2

 (2) = −2
¾

=⇒  = −2+ 2

Now we set

(*)  ( ) =  () +  ( )

where  ( ) is an auxiliary function corresponding to the (time-dependent) discrepancy between

the actual solution of the given boundary value problem and the steady-state solution . Imposing

the boundary conditions on  ( ) we find

2 =  (0 ) =  (0) +  (0 ) = 2 +  (0 )

=⇒  (0 ) = 0

−2 =  (2 ) =  (2) +  (2 ) = −2−  (2 )

=⇒  (2 ) = 0

2 cos () =  ( 0) =  () +  ( 0) = −2+ 2 +  ( 0)

=⇒  ( 0) = −2+ 2 + 2 cos

Since 


= 0 = 2
2

, when we plug (*) into the heat equation for  ( ), we find

4



− 2

2
= 0
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In other words,  ( ) must satisfy the following boundary value problem:

4



− 2

2
= 0

 (0 ) = 0

 (2 ) = 0

 ( 0) = −2+ 2 + 2 cos
In the previous problem we worked out the solution to a similar system, the only difference

being the function that appears on the right hand side of the last boundary conditions. As before,

separation of variables and boundary conditions at  = 0 and  = 2 will lead us to the following

ansatz for the solution of the BVP for  ( )

 ( ) =

∞X
=1

 sin
³
2

´

If we now impose the boundary condition at  = 0 we see

−2+ 2 + 2 cos () =
∞X
=1

 sin
³
2

´


To determine the coefficients  we multiply both sides by sin
¡

2

¢
and integrate from  = 0

to  = 2Z 2

0

(2− 2+ 2 cos ()) sin
³

2

´
 =

∞X
=1

Z 2

0

 sin
³
2

´
sin
³

2

´
 =

∞X
=1

 = 

We just need to compute

 =

Z 2

0

(2− 2+ 2cos ()) sin
³

2

´


NowZ 2

0

2 sin
³

2

´
 = 2

µ
− 2


cos
³

2

´


¶¯̄̄̄2
0

=
4


(1− cos ()) =

½
0 if  is even
8


if  is odd

−2
Z 2

0

 sin
³

2

´
 = − 2¡


2

¢2 ³sin³

2
−

³

2

´
cos
³

2

´

´´¯̄̄̄¯

2

0

=
8

22
cos ()

= − (1) 8

22

2

Z 2

0

cos () sin
³

2

´
 = −1

2

1

 + 
2

cos
³³

 +


2

´

´
− 1
2

1

− + 
2

cos
³³
− + 

2

´

´¯̄̄̄2
0

= − 2

 (2 − 4) (cos ( − 1)) =
½
0 if  is even

4
(2−4) if  is odd

Thus,

 =

½
8

22
if  is even

− 8
22

+ 8


+ 4
(2−4) if  is odd

4. Show that the wave equation

(*)  − 2 = 0

can be reduced to the form

 = 0
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by a change for variables  = − ,  = + . Conclude that the any solution of (*) can be written as

 ( ) =  (− ) +  (+ ) 

• We have
 = − 

 = + 

¾
←→

½
 = 1

2
 − 1

2


 = 1
2
 − 1

2


and we have




=








+








=




+








=








+








= − 


+ 





and so

2

2
=

µ
− 


+ 





¶µ
− 


+ 





¶
= 2

2

2
− 22 2


+ 2

2

2

2

2
=

µ



+





¶µ



+





¶
=

2

2
+ 2

2


+

2

2

Thus,µ
2

2
− 2

2

2

¶
 =

µ
2

2

2
− 22 2


+ 2

2

2
− 2

µ
2

2
+ 2

2


+

2

2

¶¶


=

µ
−42 2



¶


and so

 − 2 = 0 =⇒ −42 = 0 =⇒  = 0

• A priori a solution of  = 0 could consist of terms  () that depend only on , terms  () that

depend only on  and terms  ( ) that depend on both  and ;

 ( ) =  () +  () +  ( )

The condition  = 0 then implies that

0 =







( () +  () +  ( )) = 0 + 0 +








 ( )

by assumption each term of  ( ) depends non-trivially on both  and , and so unless  ( ) = 0,

we’ll have  6= 0. We conclude that any solution of the wave equation must be of the form
(**)  ( ) =  () +  () =  (− ) +  (+ )

• Note also that the graph of a function  (− ) as a function of  looks exactly the graph of  ()

translated a distance  down the -axis.

Because of this for fixed  the graph of  (− ) will look like the graph of  () translated a distance

 down the -axis. Letting  now vary, one can interprete the graph of the solution  (− ) as

corresponding to a certain wave packet of shape  =  () propagating down the -axis with velocity

 (since  =  will be the graph’s displacement at time ) Similarly, the graph of the solution

 (+ ) can be interpreted as a certain wave packet of shape  =  () propagating down the
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-axis in the opposite direction. Thus, via (**) every solution of the wave equation can be thought

of as the superposition of two wave packets one moving to the right and one moving to the left.

5. Find the solution of Laplace’s equation

 +  = 0

satisfying the boundary conditions

 ( 0) = 0   ( ) =  ()

 (0 ) = 0   ( ) = 0

• Setting  ( ) =  () () and separating variables we quickly obtain

 00 () = −2 () =⇒  () =  sin (+ )

 00 () = 2 () =⇒  () = 1 sinh () + 2 cosh ()

(We choose the separation constant to be a negative number −2 with a little bit of foresight. If
we had chosen it to be positive, the functions  () would not be sinusoidal functions of  and we

would not be able to easily satisfy the boundary conditions at  = 0 and  = .) The boundary

conditions at  = 0 require

0 =  (0 ) =  (0) () =⇒  (0) = 0 =⇒  sin () = 0 =⇒  = 0

and then taking  = 0 and imposing the boundary condition at  =  we find

0 =  ( ) =  () () =⇒  () = 0 =⇒  sin (+ 0) = 0 =⇒  =



  = 1 2 3   

The boundary condition at  = 0 require

0 =  ( 0) =  () (0) =⇒  (0) = 0 =⇒ 2 = 0

and so any function of the form

sin
³


´
sinh

³


´

will satisfy Laplace’s equation and three of the boundary conditions. So also will any linear combi-

nation of these functions. So we set

 ( ) =

∞X
=1

 sin
³


´
sinh

³


´

and impose the last boundary condition

(*)  () =  ( ) =

∞X
=1

 sin
³


´
sinh

³


´

On the other hand, so long as  () is continuous and differntiable, it will have a Fourier-sine

expansion of the form

(**)  () =

∞X
=1

 sin
³


´

  :=
2



Z 

0

 () sin
³


´


Comparing the coefficients of (linearly independent functions) sin
¡



¢
on the right hand sides of

(*) and (**) we conclude

 =  sinh
³


´

or

 =


sinh
¡



¢ = 2

 sinh
¡



¢ Z 

0

 () sin
³


´
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6. Express the 2-dimensional Laplace equation

 +  = 0

in terms of polar coordinates ( ) and use separation of variables to reduce it to the solution of a pair of

ordinary differential equations.

• We have
 =  cos 

 =  sin 

¾
⇐⇒

½
 =

p
2 + 2

 = tan−1 ()

According to the multi-variable chain rule




=








+











=








+









Now




=

p
2 + 2

=
 cos ()


= cos ()




=

p
2 + 2

=
 sin ()


= sin ()




= − 

2 + 2
= − sin ()

2
= −1


sin ()




=



2 + 2
=

 cos ()

2
=
1


cos ()

and so




= cos ()




− 1


sin ()







= sin ()




+
1


cos ()





We then haveµ




¶µ




¶
=

µ
cos ()




− 1


sin ()





¶µ
cos ()




− 1


sin ()





¶
=

µ
cos ()





¶µ
cos ()





¶
−
µ
cos ()





¶µ
1


sin ()





¶
−
µ
1


sin ()





¶µ
cos ()





¶
+

µ
1


sin ()





¶µ
1


sin ()





¶
= cos2 ()

2

2
− cos () sin () 



µ
1



¶




− 1

sin ()

µ



cos 

¶



+
1

2
sin ()

µ



sin ()

¶




= cos2 ()
2

2
− cos () sin ()

µ
− 1
2
+
1







¶




− 1

sin ()

µ
− sin () + cos () 



¶




+
1

2
sin ()

µ
cos () + sin ()





¶
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and µ




¶µ




¶
=

µ
sin ()




+
1


cos ()





¶µ
sin ()




+
1


cos ()





¶
= sin2 

2

2
+ sin  cos 





µ
1



¶




+
1


cos 

µ



sin 

¶



+
1

2
cos ()

µ



cos 

¶




= sin2 
2

2
+ sin  cos 

µ
− 1
2
+
1







¶




+
1


cos 

µ
cos () + sin ()





¶




+
1

2
cos ()

µ
− sin () + cos () 



¶




Thus,µ







+









¶
=
¡
sin2  + cos2 

¢ 2

2
+ 0 ·

µ
− 1
2
+
1







¶




− 1

sin ()

µ
− sin () + cos () 



¶



+
1


cos 

µ
cos () + sin ()





¶




+
1

2
sin ()

µ
cos () + sin ()





¶



+
1

2
cos ()

µ
− sin () + cos () 



¶




=
2

2
+
1



¡
sin2  + cos2 

¢ 






+
1

2

¡
sin2  + cos2 

¢ 2

2

=
2

2
+
1






+
1

2
2

2

Laplace’s equation in polar coordinates is thus

(***)

µ
2

2
+
1






+
1

2
2

2

¶
 = 0

• We’ll now try separation of variables for Laplace’s equation in polar coordinates. Setting
 ( ) =  () ()

and plugging into (***) we get

00 +
1


0 +

1

2
 00 = 0

Dividing through by  we get

00


+

0


+
1

2
 00


= 0

or which after multiplying by 2 leads to

2
00


+ 

0


= −

00



Setting the separation constant equal to a constant 2 we arrive at

2
00
+ 0 = 2

 00 = −2


