
Math 4233
SOLUTIONS TO SECOND EXAM

Thursday, July 19, 2012

1. Find the solution of the following heat conduction problem. Explain the steps you take in solving this
problem in as much detail as possible.

4ut − uxx = 0 , 0 < x < 2 , t > 0(1a)

u (0, t) = 0(1b)

u (2, t) = 0(1c)

u (x, 0) = 4 sin (6πx)(1d)

• We first use separation of variables to find a suitable family of solutions of the heat equation
satisfying the first two boundary conditions. Thus, we look for functions of the form

(1e) u (x, t) = X (x)Y (t)

that will satisfy (1a), (1b) and (1c). Substituting (1e) into (1a) and dividing the result by X (x)Y (t)
we obtain

4
Ẏ

Y
=
X ′′

X
Since the left hand side does not depend on x and the right hand side does not depend on t, we
conclude that both sides must be equal to a constant, which we shall denote by −λ2. We are thus
led to

X ′′ = −λ2X =⇒ X (x) = A sin (λx+ δ)

Ẏ = −λ
2

4
Y =⇒ Y (t) = Ce−

λ2

4 t

Imposing the boundary conditions at x = 0 on the expression (1e) we find

0 = u (0, t) = ACe−
λ2

4 t sin (δ) =⇒ δ = 0 (for non-trivial solutions)

Taking then δ = 0 and imposing the boundary condition at x = 2 we find

0 = u (2, t) = ACe−
λ2

4 t sin (2λ) =⇒ λ =
nπ

2
, n = 1, 2, . . . (for non-trivial solutions)

Thus, any function of the form

φn (x, t) = e−
1
4 (nπ2 )

2
t sin

(nπ
2
x
)

= e−(nπ4 )
2
t sin

(nπ
2
x
)

, n = 1, 2, . . .

will satisfy equations (1a) - (1c). Moreover, any linear combination of the functions φn will continue
to satisfy equations (1a) - (1c). We thus set

(1f) u (x, t) =

∞∑
n=1

ane
−(nπ4 )

2
t sin

(nπ
2
x
)

=

and try to choose the coefficients an so that the final boundary condition (1d) is satisfied. Plugging
(1f) into (1d) we obtain

4 sin (6πx) =

∞∑
n=1

ane
−(nπ4 )

2
0 sin

(nπ
2
x
)

=

∞∑
n=1

an sin
(nπ

2
x
)

From this we conclude that the coefficients an should coincide with coefficients of sin
(
nπ
2 x
)

in the
Fourier-sine expansion of the function on the right hand side on the interval [0, 2]. Thus, we set

an =
2

L

∫ L

0

4 sin (6πx) sin
(nπ
L
x
)
dx

= 4

∫ 2

0

sin (6πx) sin
(nπ

2
x
)
dx

1



2

By the orthogonality properties of the Fourier-sine functions

2

L

∫ L

0

sin

(
6π

L
x

)
sin
(nπ
L
x
)
dx =

{
1 if n = 6
0 if n 6= 6

we find

an =

{
4 if n = 12
0 otherwise

Thus,

u (x, t) = 4e−( 4π
4 )

2
t sin (2πx) = 4e−π

2t sin (2πx)
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2. Find a stable, time-independent solution of

4ut − uxx = 0 , 0 ≤ t , 0 ≤ x ≤ 2(2a)

u (0, t) = 2(2b)

u (2, t) = −2(2c)

and explain how you would employ it to develop a solution of

4ut − uxx = 0 , 0 < x < 2 , t > 0(2d)

u (0, t) = 1(2e)

u (2, t) = −1(2f)

u (x, 0) = g (x)(2g)

(You can use results obtained in Problem #1 in your answer.)

• Suppose u (t, x) = uss (x) is a time independent solution of (2a), (2b) and (2c). Then since
∂
∂tuss (x) = 0, we must have

d2uss
dx2

= 0 , uss (0) = 2 , uss (2) = −2

The differential equation implies that uss is a linear function of x

d2uss
dx2

= 0 =⇒ uss = Ax+B

If we then impose the boundary conditions at x = 0 and x = 2, we see that constants A and B
must be chosen so that

(2h) uss = −2x+ 1 .

This will be our steady state solution.
We now set

(2i) u (x, t) = uss (x) + φ (x, t)

and regard φ (x, t) as representing the discrepancy between the actual solution u (x, t) and the
eventual, steady-state solution of (2d)–(2g).

Plugging (2i) into (2d) yields

φt − φxx = 0 , 0 < t , 0 ≤ x ≤ 2

(since ∂
∂tuss = 0 = ∂2

∂x2uss) and the boundary conditions (2e), (2f) and (2g) require

1 = u (0, t) = uss (0) + φ (0, t) = 1 + φ (0, t) =⇒ φ (0, t) = 0

−1 = u (1, t) = uss (1) + φ (1, t) = −1 + φ (1, t) =⇒ φ (1, t) = 0

g (x) = u (x, 0) = uxx (x) + φ (x, 0) = −2x+ 1 + φ (x, 0) =⇒ φ (x, 0) = g (x) + 2x− 1

We need φ (x, t) to satisfy

4φt − φxx = 0 , 0 < x < 2 , t > 0(2j)

φ (0, t) = 0(2k)

φ (2, t) = 0(2l)

φ (x, 0) = g (x) + 2x− 1(2m)

From the results of Problem 1 (up to Eq. (1f)), we now that any function of the form

(2n) φ (x, t) =

∞∑
n=1

cne
−(nπ2 )

2
t sin

(nπ
2
x
)

will satisfy equations (2i) – (2l). Imposing (2m) on (2n) yields

g (x) + 2x− 2 =

∞∑
n=1

cn sin
(nπ

2
x
)
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If we multiply both sides by sin
(
mπ
2 x
)

and integrate over the interval 0 ≤ x ≤ 2 we get∫ 2

0

(g (x) + 2x− 1) sin
(nπ

2
x
)
dx =

∞∑
n=1

cn

∫
sin
(nπ

2
x
)

sin
(mπ

2
x
)
dx =

∞∑
n=1

cnδm,n = cm

Thus, if we set

cn =

∫ 2

0

(g (x) + 2x− 1) sin
(nπ

2
x
)
dx

then

u (x, t) = −2x+ 1 +

∞∑
n=1

cne
−(nπ2 )

2
t sin

(nπ
2
x
)

will satisfy the original PDE/BVP.
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3. Find the solution of Laplace’s equation

(3a) uxx + uyy = 0

satisfying the boundary conditions

u (x, 0) = 0 , u (x, b) = g (x)(3b)

u (0, y) = 0 , u (a, y) = 0(3c)

• We set

(3d) u (x, y) = X (x)Y (y)

and substitute (3d) into (3a) and then divide the resulting equation by X (x)Y (y). This yields

1

X (x)

d2X

dx2
(x) +

1

Y (y)

d2Y

dy2
= 0

The usual Separation of Variables argument now tells us that

1

X (x)

d2X

dx2
(x) = C = − 1

Y (y)

d2Y

dy2

where C is a constant. This leads us to the following pair of ODEs

X ′′ = CX(3e)

Y ′′ = −CY(3f)

Next we plug (3d) into the boundary conditions (3c). This lead us to

0 = X (0)Y (y) , ∀ y ∈ [0, b] =⇒ X (0) = 0

0 = X (a)Y (y) , ∀ y ∈ [0, b] =⇒ X (a) = 0

otherwise, we’d be forced to set Y (y) = 0 for all y ∈ [0, b] and the solution (3d) would be identically
zero for all x and y. Now

X ′′ = CX

has two different kinds of solutions, depending on whether C is postive or negative.
If C is positive, say C = λ2, then the general soltuion of (3e) will be of the form

X (x) = c1 cosh (λx) + c2 sinh (λx)

To satisfy X (0) = 0 we’d have to take c1 = 0, but then we could not also satisfy 0 = (a) =
c2 sinh (λa) unless c2 were also zero. We conclude that C can not be positive.

So we take C = −λ2 < 0. Now

X ′′ = −λ2C =⇒ X = A sin (λx+ δ) for some A ∈ R, some δ ∈ [0, 2π)

Imposing the first boundary condition

0 = X (0) = A sin (δ) =⇒ δ = 0

because setting A = 0 would otherwise trivialize the solution. Setting δ = 0 and imposing the
second boundary conditions leads to

0 = X (a) = A sin (λa) =⇒ λa = nπ =⇒ λ =
nπ

a
, n = 1, 2, 3, . . .

What we have so far is that

C = −λ2 = −n
2π2

a2
, X (x) = A sin

(nπ
a
x
)

We now impose the boundary condition u (x, 0) = 0 on our ansatz (3d):

0 = u (x, 0) = X (x)Y (0) =⇒ Y (0) = 0

But Y (y) is also to satisfy (3f)

Y ′′ = −CY =
n2π2

a2
Y =⇒ Y = c1 cosh

(nπ
a
y
)

+ c2 sinh
(nπ
a
y
)
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The boundary condition 0 = Y (0) forces us to take c1 = 0.
The preceding arguments have furnished us the following family of solutions of (3a), (3c) and the

first condition of (3b):

φn (x, y) = sin
(nπ
a
x
)

sinh
(nπ
a
y
)

, n = 1, 2, 3, . . .

Any linear combination of these functions will continuation to satisfy the PDE and the first three
boundary conditions, and so we set

u (x, t) =

∞∑
n=1

cn sin
(nπ
a
x
)

sinh
(nπ
a
y
)

and try to impose the last boundary condition:

(3g) g (x) = u (x, b) =

∞∑
n=1

cn sin
(nπ
a
x
)

sinh
(nπ
a
b
)

Multiplying both sides of (3g) by a
2 sin

(
mπ
a x
)

and then integrating over [0, a] yields

2

a

∫ a

0

sin
(mπ
a
x
)
g (x) dx =

∞∑
n=1

2

a

∫ a

0

cn sin
(mπ
a
x
)

sin
(nπ
a
x
)

sinh
(nπ
a
b
)
dx

=

∞∑
n=1

cn sinh
(nπ
a
b
)
δm,n

= cn sinh
(mπ
b
b
)

We conclude if the constants cn are chosen so that

cn =
2

a sinh
(
nπ
a b
) ∫ a

0

sin
(mπ
a
x
)
g (x) dx

then

u (x, t) =

∞∑
n=1

cn sin
(nπ
a
x
)

sinh
(nπ
a
y
)

will satisfy Laplace’s equation and all four boundary conditions.
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4.

(a) Apply Separation of Variables to reduce the problem of finding a solution the following PDE to that of
solving a pair of ODEs.

(4a)
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
= 0

• Suppose

(4b) φ (r, θ) = R (r)T (θ)

Then substituting (4b) into (4a) yields

(4c) T (θ)
d2R

dr2
(r) +

1

r
T (θ)

dR

dr
(r) +

1

r2
R (r)

d2T

dθ2
(θ) = 0

Multiplying both sides of (4c) by r2/ (T (θ)R (r)) yields

r2

R (r)

d2R

dr2
(r) +

r

R (r)

dR

dr
(r) +

1

T (θ)

d2T

dθ2
(θ) = 0

or

(4d)
r2

R (r)

d2R

dr2
(r) +

r

R (r)

dR

dr
(r) = − 1

T (θ)

d2T

dθ2
(θ)

Since the right hand side of (4d) is independent of r so must be the left hand side; and since the
left hand side of is independent of θ so must be the right hand side. So both sides are independent
of r and θ; hence both sides equal a constant. Call this constant C. We then have

r2

R (r)

d2R

dr2
(r) +

r

R (r)

dR

dr
(r) = C = − 1

T (θ)

d2T

dθ2
(θ)

or

r2

R (r)

d2R

dr2
(r) +

r

R (r)

dR

dr
(r) = C(4e)

− 1

T (θ)

d2T

dθ2
(θ) = C(4f)

Multiplying (4e) by R (r) and (4f) by T (θ) we obtain

r2
d2R

dr2
+ r

dR

dr
− CR = 0 ,(4g)

d2T

dθ2
+ CT = 0 ;(4h)

a pair of ordinary differential equations for R (r) and T (θ).

(b) Use the results of (a) to formulate an expression for the general solution of ∇2φ = 0 on the disc
D =

{
(x, y) ∈ R2 | x2 + y2 ≤ 4

}
. (Hint: the general solution of x2y′′+xy′−λ2y = 0 is y (x) = c1x

λ+c2x
−λ

if λ 6= 0, or y (x) = c1 + c2 ln |x| if λ = 0.)

• Write C = λ2.We have

d2T

dθ2
+ λ2T = 0 ⇒ Θ (θ) =

{
aλ cos (λθ) + bλ sin (λθ) if λ 6= 0

a0 + b0θ if λ = 0

r2
d2R

dr2
+ r

dR

dr
− λ2R = 0 ⇒ R (r) =

{
cλr

λ + dλr
−λ if λ 6= 0

c0 + d0 ln |r| if λ = 0
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Products of these solutions (using the same values of λ) will be solutions of Laplace’s equation. To
get a more general solution we take general linear combinations of these types of solutions

u (r, θ) = (a0 + b0θ) (c0 + d0 ln |r|) +
∑
λ

(aλ cos (λθ) + bλ sin (λθ)) cλr
λ + dλr

−λ

∼ A0 +B0θ + C0 ln |r|+D0θ ln |r|+
∑
λ

(
Aλ cos (λθ) rλ +Bλ sin (λθ) rλ + Cλ cos (λθ) r−λ +Dλ sin (λθ) r−λ

)
(c) Can your result in part (b) be simplified by imposing regularity conditions on your solution? (Hint: yes.
But what are the arguments?).

• If we demand the solutions are periodic with respect to θ (so that u (r, θ) = u (r, θ + 2π)) we need
to set B0 = D0 = 0 and restrict λ to be an integer.

u (r, θ) = A0 + C0 ln |r|+
∞∑
n=1

(
An cos (nθ) rn +Bn sin (nθ) rn + Cn cos (nθ) r−n +Dn sin (nθ) r−n

)
If we demand that the solutions remain continuous as r → 0, we need to get rid of the solutions
involving ln |r| and r−n. Thus,

u (r, θ) = A0 +

∞∑
n=1

(An cos (nθ) rn +Bn sin (nθ) rn)

would be our simplified general solution.


