LECTURE 16

Sturm-Liouville Theory and Nonhomogeneous BVPs

Recall from the last lecture the solution to a Sturm-Liouville problem is set of eigenvalues Ag, A1, Ao, ... and
a corresponding set of functions ¢g (z), ¢1 (z), ¢2 (z), ... satisfying
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and boundary conditions
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Moreover, any continuous function f : [0,1] — R can be expanded in terms of the S-L eigenfunctions
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In this lecture, we consider the problem of developing a solution ¢ (x) of a related nonhomogeneous differ-
ential equation of the form
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satisfying the same boundary conditions
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We stress that the parameter p need not be one of the Sturm-Liouville eigenvalues A,,.

Suppose that ¢ (z) is a continuous solution of (4) and (5). Then by (3), we will have an expansion
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This expansion, in and of itself, is not yet very helpful, as we still have to know ¢ (x) in order to compute
the coefficients ¢,,. However, if we insert the expansion (6) into the differential equation and use the fact
that the S-L eigenfunctions ¢,, () satisfy (1) and (2), we obtain
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Suppose we now multiply the extreme sides of this last equation by ¢,, (z) and integrate from over the

interval [0, 1]
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Case 1: u # )\,. In this situation, the preceding equation allows us to immediately solve for the coefficients
¢p, of the S-L expansion (6) of the solution to (4), (5): viz.,
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Case 2: u = \,, for some n. In this case, the condition (7) tells us that if
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then we’ll have no solution of (7) and hence no solution of the original nonhomogeneous problem. On the

other hand, if p = A\, and
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then condition (7) is vacuous. This means if we set
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will satisfy the nonhomogeneous differential equation (4) and boundary conditions (5).

Here is a theorem that summarizes the situation discussed above

THEOREM 16.1.

o Let {Ao, A1, A2, ...} be the set of eigenvalues of a (homogeneous) Sturm-Liouville problem
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and let {¢g, ¢1,...} be a corresponding set of Sturm-Liouville eigenfunctions, normalized so that



16. STURM-LIOUVILLE THEORY AND NONHOMOGENEOUS BVPS

The nonhomogeneous boundar value problem
d do B
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has a unique solution whenever & {Xo, A1, Aa,...} ; it is given by
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wherec, = v fol f(z) ép (z) do
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e If, on the other hand, i = \,,, then the non-homogeneous problem has no solution unless
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If, in fact, p = A\, and (*) is true, then there is a one-parameter family of solutions given by
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