LECTURE 14

Laplace’s Equation

So far we’ve discussed the heat equation

or

(1) v ?VAT =0
and the wave equation

0%
(2) W — O(2v2¢) =0

The last prototypical PDE is Laplace’s equation, which is
(3) V3p =0

Laplace’s equation arises in a number of physical applications, one actually follows immediately from our
discussion of the heat equation. Consider a system governed by the heat equation that is allowed to reach
a time-independent state of equilibrium. In its equilibrium state we’ll have

T <X7 t) =Ty (X)

which will obey
_or

0=3r

— OéQVQT =0- O[QVQTSS — VQTSS =0

1. Separation of Variables

In the following we’ll consider the 2-dimensional Laplace equation

2¢ 920

—V2h = —2 o
(4) 0=V<p= 922 T 2

and look for solutions of the form

() ¢ (z,y) = X (2) Y (y)
Plugging (5) into (4) and then dividing both sides by X ()Y (y) yields
X"(x) _ Y"(y)

X(@) — Y(y)

Applying the by now familiar separation-of-variables argument, we conclude that X (z) and Y (y) must
satisfy equations of the form

(6a) X" () =CX (z)
(6b) Y (y) = -CY ()

1



2. DIRICHLET BOUNDARY CONDITIONS 2

2. Dirichlet Boundary Conditions

To make further progress towards a solution we’ll now restrict attention to a particular physical situation
with a particular set of boundary conditions. Consider a rectangular plate, three sides of which are immersed
in a heat bath so that their temperatures are maintained at 0, and one side of which has its temperature
maintained at prescribed function of y:

4
T(x,b) = 0

T(0,y) =0
T(ay) = f(y)

The boundary conditions require

(7a) 0=T(z,00=X(z)Y(0) = Y (0)=0

(7b) 0=T(z,b) =X ()Y () = Y (b)=0

(7c) =T0,9)=X0)Y(y) = X(0)=0

(7d) f(y)=T(a,y)

The boundary conditions on the right of (7a) and (7b) together with the differential equation (6b) require
C = "—;T . n=1,2,

and o
v () =sn (253)
by an argument we have worked out several times before.
With C' = 5 the general solution of (6a) will be
X (z) = ¢1 cosh (%x) 4 ¢g sinh (%:1:)

which will satisfy the boundary condition (7c) only if we take c; = 0. If we now set

T (xz,y) = i ¢y, sinh (%x) sin (n%y)
n=1

then we have a solution not only of the PDE but also three out of the four boundary conditions. It remains
to adjust the coefficients ¢, so that the last boundary condition is satisfied

fly)=T(a,y) = f(y= i ¢y, sinh (n—bﬂ-a) sin (%y)

n=1

Employing the Fourier-sine expansion of f (y)

fly) = g by, sin (n—bﬂy) with b, = %/Obf (x) sin (%y) dy



3. LAPLACE’S EQUATION ON A DISK 3

we can conclude that the solution of the PDE and boundary conditions is given by

T (z,y) = f: ¢y, sinh (%x) sin (%y) with ¢, = bbmh / f(z sm ) dy
n—=1

3. Laplace’s Equation on a Disk

Let’s now consider Laplace’s equation on a disk. This problem arises, for example, when one tries to figure
out the steady state temperture distribution of a disk, when a prescribed temperature function is set around
its perimeter.

(1) V2® (z,y) =0

(2) ¢ (Rcosf, Rsinf) = f(0)
Because of the circular symmetry of the disk, this problem is most easily solved by converting to polar
coordinates

x:rcpsﬁ r:\/x:—l—yQ

y=rsinf 0 = tan™! (¥)

Using the two variable chain rule

0 or 0 00 0 0 1 . 0
oz " oxor Taras - 0 705
0 or 0 00 0 . 0 1 0
oy " ayor Tagan Snig treslgg

One finds (after a long calculation) that
02 02 92 190 1 07

02 T " o2 Tror 2o
Thus, Laplace’s equation takes the form

02® 109 1 0%®
3) oz v Trae =

If we set ®(r,0) = R(r)O (0) and apply the Separation of Variables argument to (2), we find that the
functions R (r) and © (#) must satisfy

(4) rR"+rR — \*R =
0" + 2?0 =0
where A\? is the “separation constant".

The solutions of (4) are relatively easy to find; however, they have different forms dependinng on whether
or not A2 = 0.
A =0 For this situation,
©'=0 = ©0)=A+B0
P?R'+rR =0 = R(r)=C+Dln|r|
and so we get a separation of variables solution of the form
Dy (r,0) = Ag + Boln|r| + Cof + Do In ||7||

with Ag, By, Cy and Dy arbitrary constants.



3. LAPLACE’S EQUATION ON A DISK 4

A # 0 In this situation, we find
0"+ X0=0 = ©O(0) = Acos(\)+ Bsin (\)
PR'4+rR —XR=0 = R(r)=Cr*+Dr >
and we get separation of variables solutions of the form

D) (r,0) = Ay cos (M) r* + By sin (M) r* + C cos (M) 7~ 4 Dy sin (AG)

Now any linear combination of these solutions
(5) @ (r,0) =Ap+ Boln|r|+ Cob + Do 1n |||
ZAACOS (\0) 7 +ZB,\sm (\0) 7 +chcos (A) 7 ZD)\sm (A) 7

will still be a solution of Laplace’s equation. Our aim is to use the boundary conditions to fix a unique
choice of coefficients Ag, Ay, ...

Before imposing the stated boundary condition, we first note that there are two “hidden boundary” condi-
tions based on our physical interpretation of the situation.

First of all, given the periodicity of the angular coordinate 6, we can demand
O (r,0) =P (r,0 +2m)
For this to happen, the A’s that occur on the right hand side of (5) must be integers; for
cos(M) =cos(A(0+27) = AIeZ
sin(Md) =sin(A (0 +27)) = A€Z
We'll also need to set Cy and Dy equal to 0, since F (6) = 6 is not periodic.

Secondly, we expect the temperature function ® (r,6) to remain finite as » — 0. This requires us to toss
out the solutions involving factors of In|r| and ="

We are thus left with the form the solution being
(6) O (r,0) = Ao+ i A, cos (nf)r" + i By, sin (n) r"
n=1 n=1
Now we impose the boundary conditions (2)
(7) fO)=2(R,0)= Ay + i A, cos (nf) R™ + i B, sin (nf) R
n=1 n=1

Now as a function on the interval [0, 27], f (6) has a Fourier expansion of the form

- @ oo oo )
(8) f(0) = 5 + nz::l an, cos (nh) + nz::l by, sin (nh)
with coefficients determined by
1 27
ap = — f(0") cos (nd') do’
T Jo
1 27
b, = — f(0")sin (nd") do’



4. POISSON SUM FORMULA

t

Comparing the right hand sides of (7) and (8) and using the formulas for a,, and b,, we conclude

1

Ay = !
0=75- f( ) db
1 1 7 / / /
An:ﬁ— f(0") cos (nd")do
1 1 / s !/ !/
B":Rn f(0)81n(n0)d9

4. Poisson Sum Formula

Let me now write down, explicitly, our Separation of Variables solution to the Laplace’s Equation on the
Disk.

D (r,0) = Ao + Z Ay, cos (nd) r™ + Z By, sin (n@) r"

n=1 n=1
— i / / > . L 7i
=5 f "y do +Z( ; f@ cos(n@)d@)cos (nd) ( ) +;< | 0")sin (nd') d )s1n(n0)(R)
1

=3 f( " <1 + 2; cos (nf) cos (nd') + sin (nd) sin (nd’) ) do

or
1 2m , [ee] ) . . / rn
(9) ®(r,0) = Py f(0) (1 + 2; (cos (nB) cos (nf") + sin (nh) sin (nd")) (E) do
Consider the expression inside the large parentheses
S N oy ("

(10) 142 ,; (cos (nB) cos (nd") + sin (nh) sin (nd")) (R)

Using the trig identity
cos (A) cos (B ) +sin (A)sin (B) = cos (A — B)
We can rewrite (10) as

11 1+2 S (nf — no’ (i)n
(11) + ; cos (nf — nb") 7
To simplify matters, let us temporarily set

p=0-10
i T
"R
so that (11) becomres
(12) 1 +2Zcos (ng)t
n=1
Now, via the Euler formular
inf —in6
cos (ng) = erte ™

2
and so (12) can be written

((13)) 1+ i (einetn + e—ithn) =14+ i (€Z¢t)n + i (6 ®
n=1 n=1

n=1



5. GEOMETRIC EXPRESSION OF SOLUTION

Now, by the Taylor formular for ﬁ,

1 _ 2 3 _ - n
n=1
we have
e ipaT 1 = T 1
= —— 1 ) I ————
nz::l(e ) 1 — et ’ nz::l<e ) 1— e i9t
And so (13) can be rewritten
1 1 1 1
1+— 14— —1=-1 - -
+1—6“% Jrl—e—“i’t Jr1—el¢t+1—e—l¢t

_ = (1 — ei‘i’t) (1 — e*wt) + (1 — ewt) + (1 — e*i‘z’t)

(1—et) (1 — e—i%1)
1—¢2
1 — teid — te—i® + 2
B 1—1?
- 1—2tcos (o) + 2

Finally, putting everything back together we can conclude

142" (cos (nf) cos (nf') + sin (nd) sin (nd)) (%)" T 12(n) 1 _(;%) )+ (%)’
2 —2(%) cos (0 — ¥
R? —1?

 R2—2rRcos(0—0') +r2

and so (9) can be written

1 /2 / R2 _ 2
(14) @(r,@):%/o f(e)<R2—27"Rcos(g—9/)+r2>d6

5. Geometric Expression of Solution

Let
x = [rcos (0),rsin (6)]
be an arbitrary point in the disk, and let
y =[Rcos (0'), Rsin (0')]
be an arbitrary point on the boundary of the disk. We have
e = ylI* = x| + ly* —2x -y
=R?>+7r% —2rRcos (0 — )

Thus, (14) can be expressed geometrically as

1 [ —|Ix
2.0 =5 [ 1) (—”yb'/ - X|'|2') as
_ L Iy I* = 1]
B QWR/O &) ( ly —x|” fedf

_ 1 £ ) Iy lI” = 1] dy
2r ki Jop ly — x|



