
LECTURE 14

Laplace’s Equation

So far we’ve discussed the heat equation

(1)



− 2∇2 = 0 

and the wave equation

(2)
2

2
− 2∇2 = 0 

The last prototypical PDE is Laplace’s equation, which is

(3) ∇2 = 0 

Laplace’s equation arises in a number of physical applications, one actually follows immediately from our

discussion of the heat equation. Consider a system governed by the heat equation that is allowed to reach

a time-independent state of equilibrium. In its equilibrium state we’ll have

 (x ) =  (x)

which will obey

0 =



− 2∇2 = 0− 2∇2 =⇒ ∇2 = 0

1. Separation of Variables

In the following we’ll consider the 2-dimensional Laplace equation

(4) 0 = ∇2 = 2

2
+

2

2

and look for solutions of the form

(5)  ( ) =  () () 

Plugging (5) into (4) and then dividing both sides by  () () yields

 00 ()
 ()

= −
00 ()

 ()

Applying the by now familiar separation-of-variables argument, we conclude that  () and  () must

satisfy equations of the form

 00 () =  ()(6a)

 00 () = − ()(6b)

1
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2. Dirichlet Boundary Conditions

To make further progress towards a solution we’ll now restrict attention to a particular physical situation

with a particular set of boundary conditions. Consider a rectangular plate, three sides of which are immersed

in a heat bath so that their temperatures are maintained at 0, and one side of which has its temperature

maintained at prescribed function of :

The boundary conditions require

0 =  ( 0) =  () (0) =⇒  (0) = 0(7a)

0 =  ( ) =  () () =⇒  () = 0(7b)

0 =  (0 ) =  (0) () =⇒  (0) = 0(7c)

 () =  ( )(7d)

The boundary conditions on the right of (7a) and (7b) together with the differential equation (6b) require

 =



  = 1 2   

and

 () = sin
³



´

by an argument we have worked out several times before.

With  = 

the general solution of (6a) will be

 () = 1 cosh
³



´
+ 2 sinh

³


´

which will satisfy the boundary condition (7c) only if we take 2 = 0. If we now set

 ( ) =

∞X
=1

 sinh
³



´
sin
³



´

then we have a solution not only of the PDE but also three out of the four boundary conditions. It remains

to adjust the coefficients  so that the last boundary condition is satisfied

 () =  ( ) =⇒  () =

∞X
=1

 sinh
³



´
sin
³



´

Employing the Fourier-sine expansion of  ()

 () =

∞X
=1

 sin
³



´

with  =
2



Z 

0

 () sin
³



´
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we can conclude that the solution of the PDE and boundary conditions is given by

 ( ) =

∞X
=1

 sinh
³



´
sin
³



´

with  =
2

 sinh
¡



¢ Z 

0

 () sin
³



´


3. Laplace’s Equation on a Disk

Let’s now consider Laplace’s equation on a disk. This problem arises, for example, when one tries to figure

out the steady state temperture distribution of a disk, when a prescribed temperature function is set around

its perimeter.

(1) ∇2Φ ( ) = 0

(2)  ( cos  sin ) =  ()

Because of the circular symmetry of the disk, this problem is most easily solved by converting to polar

coordinates

 =  cos 

 =  sin 
⇐⇒  =

p
2 + 2

 = tan−1
¡



¢
Using the two variable chain rule




=








+








= cos 




− 1


sin 







=








+








= sin 




+
1


cos 





One finds (after a long calculation) that

2

2
+

2

2
=

2

2
+
1






+
1

2
2

2

Thus, Laplace’s equation takes the form

(3)
2Φ

2
+
1



Φ


+
1

2
2Φ

2
= 0

If we set Φ ( ) =  ()Θ () and apply the Separation of Variables argument to (2), we find that the

functions  () and Θ () must satisfy

200 + 0 − 2 = 0(4)

Θ00 + 2Θ = 0

where 2 is the “separation constant".

The solutions of (4) are relatively easy to find; however, they have different forms dependinng on whether

or not 2 = 0.

 = 0 For this situation,

Θ00 = 0 ⇒ Θ () = +

200 + 0 = 0 ⇒  () =  + ln ||
and so we get a separation of variables solution of the form

Φ0 ( ) = 0 +0 ln ||+ 0 +0 ln kk
with 0 0 0 and 0 arbitrary constants.
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 6= 0 In this situation, we find
Θ00 + 2Θ = 0 ⇒ Θ () =  cos () + sin ()

200 + 0 − 2 = 0 ⇒  () =  +−

and we get separation of variables solutions of the form

Φ ( ) =  cos () 
 + sin () 

 +  cos () 
− + sin () 

− 

Now any linear combination of these solutions

Φ ( ) = 0 +0 ln ||+ 0 +0 ln kk(5)

+
X


 cos () 
 +

X


 sin () 
 +

X


 cos () 
− +

X


 sin () 
−

will still be a solution of Laplace’s equation. Our aim is to use the boundary conditions to fix a unique

choice of coefficients 0  

Before imposing the stated boundary condition, we first note that there are two “hidden boundary” condi-

tions based on our physical interpretation of the situation.

First of all, given the periodicity of the angular coordinate , we can demand

Φ ( ) = Φ (  + 2)

For this to happen, the ’s that occur on the right hand side of (5) must be integers; for

cos () = cos ( ( + 2)) ⇒  ∈ Z
sin () = sin ( ( + 2)) ⇒  ∈ Z

We’ll also need to set 0 and 0 equal to 0, since  () =  is not periodic.

Secondly, we expect the temperature function Φ ( ) to remain finite as  → 0. This requires us to toss

out the solutions involving factors of ln || and −

We are thus left with the form the solution being

(6) Φ ( ) = 0 +

∞X
=1

 cos () 
 +

∞X
=1

 sin () 


Now we impose the boundary conditions (2)

(7)  () = Φ ( ) = 0 +

∞X
=1

 cos ()
 +

∞X
=1

 sin ()


Now as a function on the interval [0 2],  () has a Fourier expansion of the form

(8)  () =
0

2
+

∞X
=1

 cos () +

∞X
=1

 sin ()

with coefficients determined by

 =
1



Z 2

0

 (0) cos (0) 0

 =
1



Z 2

0

 (0) sin (0) 0
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Comparing the right hand sides of (7) and (8) and using the formulas for  and  we conclude

0 =
1

2

Z 2

0

 (0) 0

 =
1



1



Z 2

0

 (0) cos (0) 0

 =
1



1



Z 2

0

 (0) sin (0) 0

4. Poisson Sum Formula

Let me now write down, explicitly, our Separation of Variables solution to the Laplace’s Equation on the

Disk.

Φ ( ) = 0 +

∞X
=1

 cos () 
 +

∞X
=1

 sin () 


=
1

2

Z 2

0

 (0) 0 +
∞X
=1

µ
1



Z 2

0

 (0) cos (0) 
¶
cos ()

³ 


´
+

∞X
=1

µ
1



Z 2

0

 (0) sin (0) 0
¶
sin ()

³ 


´
=
1

2

Z 2

0

 (0)

Ã
1 + 2

∞X
=1

(cos () cos (0) + sin () sin (0))
³ 


´!


or

(9) Φ ( ) =
1

2

Z 2

0

 (0)

Ã
1 + 2

∞X
=1

(cos () cos (0) + sin () sin (0))
³ 


´!


Consider the expression inside the large parentheses

(10) 1 + 2

∞X
=1

(cos () cos (0) + sin () sin (0))
³ 


´
Using the trig identity

cos () cos ( ) + sin () sin () = cos (−)

We can rewrite (10) as

(11) 1 + 2

∞X
=1

cos ( − 0)
³ 


´
To simplify matters, let us temporarily set

 =  − 0

 =




so that (11) becomres

(12) 1 + 2

∞X
=1

cos () 

Now, via the Euler formular

cos () =
 + −

2

and so (12) can be written

((13)) 1 +

∞X
=1

¡
 + −

¢
= 1 +

∞X
=1

¡


¢
+

∞X
=1

¡
−

¢
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Now, by the Taylor formular for 1
1− ,

1

1− 
= 1 +  + 2 + 3 + · · · = 1 +

∞X
=1



we have ∞X
=1

¡


¢
=

1

1− 
− 1 

∞X
=1

¡
−

¢
=

1

1− −
− 1

And so (13) can be rewritten

1 +
1

1− 
− 1 + 1

1− −  − 1 = −1 +
1

1− 
+

1

1− −

=
− ¡1− 

¢ ¡
1− −

¢
+
¡
1− 

¢
+
¡
1− −

¢
(1− ) (1− −)

=
1− 2

1−  − − + 2

=
1− 2

1− 2 cos () + 2

Finally, putting everything back together we can conclude

1 + 2

∞X
=1

(cos () cos (0) + sin () sin (0))
³ 


´
=

1− ¡ 


¢2
1− 2 ¡ 



¢
cos ( − 0) +

¡



¢2
=

2 − 2

2 − 2 cos ( − 0) + 2

and so (9) can be written

(14) Φ ( ) =
1

2

Z 2

0

 (0)
µ

2 − 2

2 − 2 cos ( − 0) + 2

¶


5. Geometric Expression of Solution

Let

x = [ cos ()   sin ()]

be an arbitrary point in the disk, and let

y = [ cos (0)   sin (0)]

be an arbitrary point on the boundary of the disk. We have

kx− yk2 = kxk2 + kyk2 − 2x · y
= 2 + 2 − 2 cos ( − 0)

Thus, (14) can be expressed geometrically as

Φ ( ) =
1

2

Z 2

0

 (y)

Ã
kyk2 − kxk
ky− xk2

!


=
1

2

Z 2

0

 (y)

Ã
kyk2 − kxk
ky − xk2

!


=
1

2

I


 (y)

Ã
kyk2 − kxk
ky− xk2

!
y


