
LECTURE 13

The Wave Equation

The PDE that governs the propagation of (e.g. sound) waves in three dimensions is of the form
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equation (1) corresponds to the proprogation of (if not the definition of) wave phenomena in an -

dimensional space. In this lecture we shall concentrate on the 1-dimensional wave equation
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1. Separation of Variables

Once again our method of solution will be to

(i) Look first for solutions of the form  ( ) =  () ()

(ii) Utilize boundary conditions at  = 0 and  =  to restrict choices of separation constants and

solutions of the differential equations for  () and  ().

(iii) Construct a candidate solution for solutions satisfying a boundary condition at  = 0 out of the

possibilities discovered in step (ii)

(iv) Impose the boundary condition at  = 0 to obtain a unique solution.

Thus, setting

 ( ) =  () ()

and inserting this into (1) yields1

 () ̈ () + 2 () 00 () = 0

Dividing both sides by 2 () () yields
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Since the left hand side depends only on  and the right hand side depends only on  and because this

equation must hold for all  and , we conclude that both sides must be equal to a constant, which we’ll

denote by . Thus,
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1Here we are employing the physicists’ shorthand: ̈ ≡ 2
2

and 00 ≡ 2
2
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2. BOUNDARY CONDITIONS 2

or

̈ =


2
(3)

 00 = (4)

2. Boundary Conditions

If we think of (2) as the PDE governing the propagation of waves on a violin string, it is natural to impose

the following boundary conditions of the form

 (0 ) = 0(5a)

 ( ) = 0(5b)

 ( 0) =  ()(5c)

̇ ( 0) =  ()(5d)

For example, if we set
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this would correspond to situation where the violin string of length  was released from an initial configu-

ration shown below at time  = 0.

Now unless we choose the separation constant  to be negative, the solutions of (3) and (4) will either be

exponentially decaying or decreasing:
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Expecting instead oscillatory solutions we stipulate

 = −2  0
This leads us to

̈ = −
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2
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 00 = −2(7)

The general solution of (7) is

 () =  sin (+ )

Imposing the boundary conditions at  = 0 and  = 

0 =  (0 ) =⇒ 0 =  (0)

0 =  ( ) =⇒ 0 =  ()
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requires us to take

 = 0
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for some  ∈ N

But then once we have  = , the general solution of (6) is

 () = 1 cos
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Thus, functions of the form
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will automatically satisfy the wave equation plus the boundary conditions at  = 0 and  = 

We now look for a linear combination of the functions 1 and 2 that will satisfy the boundary conditions

at  = 0. Setting
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we have
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Comparing the right hand sides of (9) and (10) with the Fourier-sine expansions of, respectively,  () and

 () we can conclude that if we choose
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then (8) will satisfy the wave equation (2) and the boundary conditions (5).


