LECTURE 13

The Wave Equation

The PDE that governs the propagation of (e.g. sound) waves in three dimensions is of the form
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In fact, when the Laplace operator V2 = 81:2 + 6y2 + 8:2 is generalized to the n-dimensional Laplace
operator
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equation (1) corresponds to the proprogation of (1f not the definition of) wave phenomena in an n-
dimensional space. In this lecture we shall concentrate on the 1-dimensional wave equation
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1. Separation of Variables

Once again our method of solution will be to

(i) Look first for solutions of the form ¢ (z,t) = X ()Y (t)
(ii) Utilize boundary conditions at © = 0 and « = L to restrict choices of separation constants and
solutions of the differential equations for X (x) and Y (¢).
(iii) Construct a candidate solution for solutions satisfying a boundary condition at ¢ = 0 out of the
possibilities discovered in step (ii)
(iv) Impose the boundary condition at ¢t = 0 to obtain a unique solution.

Thus, setting
¢ (z,t) = X ()Y (t)
and inserting this into (1) yields'
X (2)Y (t) + EY (1) X" (z) =0
Dividing both sides by k2X (z) Y (t) yields
1Y (@) X' (x)
Y ()  X(z)

Since the left hand side depends only on ¢ and the right hand side depends only on x and because this
equation must hold for all z and ¢, we conclude that both sides must be equal to a constant, which we’ll
denote by C'. Thus,
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Here we are employing the physicists’ shorthand: Y = TR and X" = =
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or

e
(3) V=Y
(4) X" =CX

2. Boundary Conditions

If we think of (2) as the PDE governing the propagation of waves on a violin string, it is natural to impose
the following boundary conditions of the form

(5a) ¢ (0,t) =0
(5b) ¢ (L,t)=0
(5¢) ¢ (2,0) = f(x)
(5d) ¢ (,0) = g (x)
For example, if we set
J @)= { %(22% z) %ifci%

this would correspond to situation where the violin string of length I was released from an initial configu-
ration shown below at time ¢ = 0.
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Now unless we choose the separation constant C' to be negative, the solutions of (3) and (4) will either be
exponentially decaying or decreasing:
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y' =Cy =— y=cie + coe”

Expecting instead oscillatory solutions we stipulate

C=-)\<0
This leads us to
. 22
(6) Y = —EY
(7) X" =-NX

The general solution of (7) is
X (x) = Asin (Az + 9)
Imposing the boundary conditions at x =0 and z = L
0=¢(0,t) = 0=X(0)
0=6¢(Lt) = 0=X(L)
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requires us to take
0=0
)\:% for some n € N
But then once we have A = nw/L, the general solution of (6) is
Y (t) = ¢ cos (kL ) —i—cQsm(kL )
Thus, functions of the form
. (/nTw
Vi _COS(kL )sm(fm) , neN
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will automatically satisfy the wave equation plus the boundary conditions at =0 and x = L

We now look for a linear combination of the functions 1 ,, and 1 ,, that will satisfy the boundary conditions
at t = 0. Setting

(8) (b(ac,t):ni_o:lancos (% )sm( ) Zb sin (—t) 5111( 7 )

we have

(9) f(x)=¢(z,0)= f: ap, Sin (%x)

(10) g(z) = (z,0) = i(l@L)b mn(ng:p)

Comparing the right hand sides of (9) and (10) with the Fourier-sine expansions of, respectively, f (z) and
g (z) we can conclude that if we choose
/ f (x)sin —x) dx

bn—— g()sm(nL )dz
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then (8) will satisfy the wave equation (2) and the boundary conditions (5).



