
LECTURE 11

Fourier Series

A fundamental idea introduced in Math 2233 is that the solution set of a linear differential equation is a

vector space. In fact, it is a vector subspace of a vector space of functions. The idea that functions can be

thought of as vectors in a vector space is also crucial in what will transpire in the rest of this court.

However, it is important that when you think of functions as elements of a vector space  , you are thinking

primarily of an abstract vector space - rather than a geometric rendition in terms of directed line segments.

In the former, abstract point of view, you work with vectors by first adopting a basis {v1    v} for 
and then expressing the elements of  in terms of their coordinates with respect to that basis. For example,

you can think about a polynomial

 = 1 + 2+ 32 − 43
as a vector, by using the monomials

©
1  2 3   

ª
as a basis and then thinking of the above expression

for  as “an expression of ” in terms of the basis
©
1  2 3   

ª
. But you can express  in terms of its

Taylor series about  = 1:

 = 2− 8 (− 1)− 21(− 1)2 − 16 (− 1)3 − 4 (− 1)4

and think of the polynomials
³
1 − 1 (− 1)2  (− 1)3    

´
as providing another basis for the vector

space of polynomials. Granted the second expression for  is uglier than the first, abstractly the two

expressions are on an equal footing and moveover, in some situations the second expression might be more

useful - for example, in understanding the behavior of  near  = 1. Indeed, the whole idea of Taylor series

can be thought of as the means by which one expresses a given function in terms of a basis of the formn
1 (− 0)  (− 0)

2
   

o
.

But there are many other interesting and useful bases for spaces of functions. The one we shall develop

first is one that uses certain infinite families of trigonometric functions as a basis for the space of functions.

A bit more explicitly, we shall consider functions of the form cos
¡



¢
and sin

¡



¢
, where  ∈ N as a

basis. As the utility of any basis is derived principally from the special properties of its members, the first

thing we need do is discuss the special properities of these trigonometric functions.

1. Properties of Trignometric Functions

1.1. Periodicity. Whenever a function  obeys a rule like

 (+  ) =  ()

we say that  is periodic with period  . The key examples for what follows are the trigonometric functions

cos () and sin (); for which

cos (+ 2) = cos ()

sin (+ 2) = sin ()

which are periodic with period 2. Moreover, for any integer  the functions cos () and sin () are also

periodic with period 2. For example, if  = cos (),  ∈ Z, then
 (+ 2) = cos ( (+ 2)) = cos (+ 2) = cos () =  () .

1
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Consider now the function  () = cos
¡



¢
,  = 0 1 2    We then have

 (+ 2) = cos
³

(+ 2)

´
= cos

³


+ 2
´
= cos

³


´
=  ()

Similarly, if  () = sin
¡



¢
,  = 0 1 2     we have  (+ 2) =  ().

Moreover, if we have any linear combination of functions of the form cos
¡



¢
, sin

¡



¢
,  = 0 1 2   

 () =
X


 cos
³


´
+
X


 sin
³


´

we will have

 (+ 2) =  ()

And so the trigonometric functions cos
¡



¢
, sin

¡



¢
,  = 0 1 2   , provide a natural basis for con-

structing functions that are periodic with period 2.

1.2. Orthogonality. Recall that an inner product on a real vector space  is pairing  :  ×  −→
R : ( ) −→  ( ) such that

•  ( ) =  ( ) for all   ∈  ;

•  ( ) ≥ 0 for all  ∈  ; and

•  ( ) = 0 ⇐⇒  = 0.

Of course the prototypical inner product is the familar dot product for vectors in R. There is also a
natural inner product for the vector space of continuous functions with period 2.

( ) =

Z 

−

Theorem 11.1. Let  be the vector space of continuous functions on the interval [−] ⊂ R. Then the
mappling

  −→ h i :=
Z 

−
 ()  () 

provides a positive-definite inner product on  . Moreover, if  are non-negative integersZ 

−
cos
³


´
cos
³



´
 =

½
 if  = 

0 if  6= Z 

−
sin
³


´
cos
³



´
 = 0 ∀  ∈ NZ 

−
sin
³


´
sin
³



´
 =

½
 if  = 

0 if  6= 

Proof: (partial) By the addition and subtraction formulas for cosine functions

cos (+) = cos () cos − sin () sin ()
cos (−) = cos () cos () + sin () sin ()

we have

cos () cos =
1

2
cos (+) +

1

2
cos (−)
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Thus, if  6= , thenZ 

−
cos
³


´
cos
³



´
 =

1

2

Z 

−
cos
³ 


(+)

´
+

1

2

Z 

−
cos
³ 


(−)

´


=
1

2

µ −
 (+)

sin
³ 


(+)

´¶¯̄̄̄
−

+
1

2

µ −
 (−)

sin
³ 


(−)

´¶¯̄̄̄
−

=
1

2

µ −
 (+)

sin ( (+))

¶
+
1

2

µ


 (+)
sin ( (+))

¶
+
1

2

µ −
 (−)

sin ( (−))

¶
+
1

2

µ


 (−)
sin ( (−))

¶
= 0 + 0 + 0 + 0

and if  = Z 

−
cos
³


´
cos
³


´
 =

1

2

Z 

−
cos
³ 


(+ )

´
+

1

2

Z 

−
cos
³ 


(− )

´


=
1

2

Z 

−
cos

µ
2




¶
+

1

2

Z 

−
cos (0) 

=
1

2

µ −
2

¶
sin

µ
2




¶¯̄̄̄
−
+
1

2


¯̄̄̄
−

= 0 + 0 +
1

2
−

µ
−1
2


¶
= 

2. Fourier Series

2.1. Definition.

Definition 11.2. A (formal) Fourier series is an expression of the form

(1)  () =
0

2
+

∞X
=1

 cos
³


´
+

∞X
=1

 sin
³


´

where {0 1 2     } and {1 2 3   } are sequences of real numbers.

So long as the coefficients  and  tend to zero sufficiently fast, such series will converge to define a certain

function of the parameter . However, unlike power series, that is to say series of the form

(2)  () =

∞X
=0

 (− )


a Fourier series need not converge to a differentiable function, in fact, a Fourier series need not converge to

a continuous function.We shall explore such phenomena a bit later.

Yet when a Fourier series does converge, it at least maintains the periodicity property of its component

trigonometric functions; that is to say, if  () is a convergent Fourier series then

 (+ ) =  () 
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2.2. Euler-Fourier Formula. If you know that a power series  () as in (2) converges to a particular

function, then it coincides with the Taylor expansion of  () about , and in fact the Taylor formula allows

one to compute all of the coefficients  in terms of derivatives of  ()

 =
1

!





¯̄̄̄


For Fourier series this is a somewhat analogous situation.

Theorem 11.3. Suppose

 () =
0

2
+

∞X
=1

 cos
³


´
+

∞X
=1

 sin
³


´

is a convergent Fourier series. Then

 =
1



Z 

−
 () cos

³


´
(3a)

 =
1



Z 

−
 () sin

³



´
(3b)

On the other hand, so long as  () is an integrable function on the interval [−], then the formula (3a)
and (3b) can be used to attach a particular Fourier series to  ():

 () →
(

 ≡ 1


R 
−  () cos

¡



¢
  = 0 1 2   

 ≡ 1


R 
−  () sin

¡



¢
  = 1 2   

)
→  () :=

0

2
+

∞X
=1

 cos
³


´
+

∞X
=1

 sin
³


´

and it turns out that

Theorem 11.4. Suppose  and 

are piece-wise continuous on the interval [−]. Then  has a Fourier

series expansion

 () =
0

2
+

∞X
=1

 cos
³


´
+

∞X
=1

 sin
³


´

 ≡ 1



Z 

−
 () cos

³


´
  = 0 1 2   

 ≡ 1



Z 

−
 () sin

³


´
  = 1 2   

that converges to  () at all points  ∈ [−] where  () is continuous and to 1
2
( (+)−  (−)) at all

points where  () is discontinuous.

We call such a Fourier series, the Fourier expansion of  (). (The caveat “almost everywhere” can even be

removed if  () is continuous).

Example 11.5. Consider the following function on [−] with discontinuities at  = − 0 :

 () :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
  = −
0 −    0

  = 0

 0    

  = 
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We have

0 =
1



Z 

−
 ()  =

1



Z 

0

 = 

 =
1



Z 

−
 () cos

³


´
 =

Z 

0

cos
³


´
 =




sin
³



´¯̄̄̄
0

= 0   = 1 2   

 =
1



Z 

−
 () sin

³


´
 =

Z 

0

sin
³


´
 =

−


cos
³



´¯̄̄̄
0

= 0   = 1 2   

and for  = 1 2 3   

 =
1



Z 

−
 () cos

³


´
 =

Z 

0

cos
³


´


=



sin
³



´¯̄̄̄
0

= 0

 =
1



Z 

−
 () sin

³


´
 =

Z 

0

sin
³


´


=
−


cos
³



´¯̄̄̄
0

= 0

=



(1− cos ())

=

½
0 if  is even
2


if  is odd

and so

 () =


2
+
2



∞X
=1

1

2 − 1 sin
µ
(2 − 1)




¶

Note that at  = − 0 , the right hand side evaluates to 
2
= 1

2
( (+)−  (−)). Below is a plot of the

sum of the first 20 terms of the Fourier expansion of  ().
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3. Fourier Sine and Cosine Series

The way we set things up the Fourier expansion of a function  () that is continuous on an interval [−]
is

 () =
0

2
+

∞X
=1

 cos
³


´
+

∞X
=1

 sin
³


´

where

 :=
1



Z 

−
 () cos

³


´


 :=
1



Z 

−
 () sin

³


´


Suppose now that  () is a function defined on the interval [0 ]. Then there are two simple ways of

extending  to a function  on [−] and computing its Fourier expansion.

• Extend  to an even function  on [−] by setting

 () =

½
 () 0 ≤  ≤ 

 (−) − ≤   0

• Extend  to an odd function  on [−] by setting

 () =

½
 () 0 ≤  ≤ 

− () − ≤  ≤ 0
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The Fourier coefficients of  will be

 =

Z 

−
 () cos

³


´


=
1



Z 0

−
 () cos

³


´
+

1



Z 

0

 () cos
³


´


= − 1


Z 0



 (−0) cos
³
−


0
´
0 +

1



Z 

0

 () cos
³


´


=
1



Z 

0

 (0) cos
³

0
´
0 +

1



Z 

0

 () cos
³


´


=
2



Z 

0

 () cos
³


´


 =

Z 

−
 () sin

³


´


=
1



Z 0

−
 () sin

³


´
+

1



Z 

0

 () sin
³


´


= − 1


Z 0



 (−0) sin
³
−


0
´
0 +

1



Z 

0

 () sin
³


´


= − 1


Z 

0

 (0) sin
³

0
´
0 +

1



Z 

0

 () cos
³


´


= 0

and so

 () =
0

2
+
X
=0

 cos
³


´

;  =
2



Z 

0

 () cos
³


´


On the other hand, on the interval [0 ],  () must agree with the original function  (). Thus,

 () =
0

2
+
X
=0

 cos
³


´

;  =
2



Z 

0

 () cos
³


´
 ; ∀  ∈ [0 ]

This expansion of  (), valid on an interval [0 ] is called the Fourier-cosine expansion of  ().

Similarly, we can compute the Fourier expansion of  (), and it turns out its Fourier coefficients are

given by.

 = 0   = 0 1 2 3   

 =

Z 

0

 () sin
³


´


Since  () must agree with  () on [0 ] we have

 () =
X
=0

 sin
³


´

;  =
2



Z 

0

 () sin
³


´
 ; ∀  ∈ [0 ]

The right hand side is called the Fourier-sine expansion of  ().

In summary, a given function can be expanded in terms of trignometric functions several different ways:
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 () =
0

2
+

∞X
=1

 cos
³


´
+

∞X
=1

 sin
³


´

 ∀  ∈ [](General Fourier series)

 :=
1



Z 

−
 () cos

³


´


 :=
1



Z 

−
 () sin

³


´


 () =
0

2
+
X
=0

 cos
³


´

; ∀  ∈ [0 ](Fourier-cosine series)

 =
2



Z 

0

 () cos
³


´


 () =
X
=0

 sin
³


´

; ∀  ∈ [0 ](Fourier-sine series)

 =
2



Z 

0

 () sin
³


´



