Math 4233
Homework Set 2

1. Find the general solution of the following non-autonomous, homogeneous linear system
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2.Find the general solution of the following inhomogeneous linear system
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3. The equation of motion for a spring-mass system with damping is
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where m, ¢, k are positive constants (mass, damping coefficient and spring force constant).
(a) Write this equation as a system of two first order equations for u; (t) = z (t) and up (t) = 9.
(b) Show that u; = 0, us = 0 is a critical point and analyze the nature and stability of the critical point as

a function of the parameters m,c and k.

4. Consider the linear system
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where a11,a12,a21, and age are real constants and the corresponding matrix is diagonalizable.
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(a) Show that the critical point (0,0) is a node if ¢ > 0 and p? —4q > 0

(b) Show that the critical point (0,0) is a saddle point if ¢ < 0

(c) Show that the critical point (0,0) is a spiral point if p # 0 and p? — 4¢ < 0
(d) Show that the critical point (0,0) is a stable center point if p =0 and ¢ > 0.

Hint: Note first that in terms of the eigenvalues 71,79 of the coefficient matrix, p = r1 + ro and r17r2 = q.

5. For each nonlinear system below, verify that (0,0) is a critical point and that the system is locally linear
about (0,0). Discuss the stability of the critical point (0,0) by examining the corresponding linear system.
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6. For each of the following systems carry out the following steps.

(i) Identify the critical points.
(ii) For each critical point ¢, identify the corresponding linear system. Write down the general solution

of these linear systems and discuss the stability of the solutions near the critical solution x (t) = c.
(iii) Plot the direction field of the original system and discuss the evolution of the system for various

initial conditions.
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