
MATH 4063-5023
Homework Set 7

1. Find the characteristic polynomials and minimal polynomials of the following matrices.

(a)

 2 0 0
0 2 0
0 0 2


• The characteristic polynomial of this matrix is

pA (λ) = det

 2− λ 0 0
0 2− λ 0
0 0 2− λ

 = (2− λ)
3

The minimal polynomial will always be a factor of the characteristic polynomial; in fact, it
will be the factor mA (x) of smallest degree such mA (A) = 0. The possible factors of pA (λ) are

(2− λ), (2− λ)
2
, (2− λ)

3
. We have

(2 · I− λ)|λ=A =

 2 0 0
0 2 0
0 0 2

−
 2 0 0

0 2 0
0 0 2

 =

 0 0 0
0 0 0
0 0 0

 = 0

so in fact the factor of lowest degree is the minimal polynomial. Thus

mA (x) = 2− x

(b)

 2 1 1
0 2 1
0 0 2


• The characteristic polynomial is again pA (x) = (2− x)

3
, and we have the same initial possibilities

for the minimal polynomial. We evaluate each of these possibilities at x = A

(2 · 1− x)|x=A =

 0 1 1
0 0 1
0 0 0

 6= 0

(2 · 1− x)
2
∣∣∣
x=A

=

 0 1 1
0 0 1
0 0 0

 0 1 1
0 0 1
0 0 0

 =

 0 0 1
0 0 0
0 0 0

 6= 0

(2 · 1− x)
3
∣∣∣
x=A

=

 0 1 1
0 0 1
0 0 0

 0 1 1
0 0 1
0 0 0

 0 1 1
0 0 1
0 0 0

 =

 0 0 0
0 0 0
0 0 0

 = 0

So the minimal polynomial is (2− x)
3

2. Find the eigenvalues of the following matrice, and then for each eigenvalue, find a basis for the corre-
sponding eigenspace, and state the algebraic and geometric multiplicity of eigenvalue.

(a)

(
1 2
0 3

)
• First we find the eigenvalues. This is done by finding the roots of the characteristic polynomial:

0 = det

(
1− λ 2

0 3− λ

)
= (1− λ) (3− λ) ⇒ λ = 1, 3

1



2

To find the eigenvectors corresponding to an eigenvalue λ = r, we solve the homogeneous linear
system (A− rI)x = 0. Any basis for this solution space will provide us with a set of linearly
independent eigenvectors spanning the corresponding eigenspace.

λ = 1:

(A− (1) I)x = 0 ⇐⇒
(

1− 1 2
0 3− 1

)(
x1
x2

)
=

(
0
0

)
or (

0 2
0 2

)(
x1
x2

)
=

(
0
0

)
The coefficient matrix for this homogeneous linear system row reduces to the following matrix in
Reduced Row Echelon Form(

0 1
0 0

)
⇒ solution is x2 = 0

The component x1 of the solution vector is left as a free parameter. Thus,

x =

(
x1
0

)
= x1

(
1
0

)
Thus, [1, 0] will be a basis for the solution space, hence a basis for the λ = 1 eigenspace.

λ = 3:

(A− (3) I)x = 0 ⇐⇒
(

1− 3 2
0 3− 3

)(
x1
x2

)
=

(
−2 0
0 0

)(
x1
x2

)
=

(
0
0

)
It’s pretty clear that the solution of this homogeneous linear system will have x1 = 0, while x2
will be a free parameter. Thus,

x =

(
0
x2

)
= x1

(
0
1

)
and so [0, 1] will be a basis for the solution space, and so also a basis for the λ = 3 eigenspace.

(b)

 2 0 0
2 1 0
2 2 2

,

• In this (and subsequent) parts, I’ll just summarize the calculations following the steps used in part
(a).

det

 2− λ 0 0
2 1− λ 0
2 2 2− λ

 = (1− λ) (2− λ)
2 ⇒ λ = 1, 2

λ = 1 :

(A− (1) I) =

 1 0 0
2 0 0
2 2 1

 row reduction−−−−−−−−−−−−−→

 1 0 0
0 1 1

2
0 0 0

 solutions−−−−−−−−−→

{
x1 = 0

x2 = − 1
2x3

solution vector−−−−−−−−−−−−−−→ x = x3

 0
− 1

2
1

 basis for λ = 1 eigenspace
−−−−−−−−−−−−−−−−−−−−−−−→

 0
− 1

2
1


λ = 2 :

(A− (2) I) =

 0 0 0
2 −1 0
2 2 0

 row reduction−−−−−−−−−−−−−→

 1 0 0
0 1 0
0 0 0

 solutions−−−−−−−−−→

{
x1 = 0
x2 = 0

solution vector−−−−−−−−−−−−−−→ x = x3

 0
0
1

 basis for λ = 2 eigenspace
−−−−−−−−−−−−−−−−−−−−−−−→

 0
0
1
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(c)

 −3 0 4
0 −1 0
−2 7 3


•

det (A− λI) = det

 −3− λ 0 4
0 −1− λ 0
−2 7 3− λ

 = −λ3−λ2 +λ+1 = − (λ− 1) (λ+ 1)
2 ⇒ λ = 1,−1

λ = 1 :

(A− (1) I) =

 −4 0 4
0 −2 0
−2 7 2

 row reduction−−−−−−−−−−−−−→

 1 0 −1
0 1 0
0 0 0

 solutions−−−−−−−−−→

{
x1 = x3
x2 = 0

solution vector−−−−−−−−−−−−−−→ x = x3

 1
0
1

 basis for λ = 1 eigenspace
−−−−−−−−−−−−−−−−−−−−−−−→

 1
0
1


λ = −1 :

(A− (−1) I) =

 −2 0 4
0 0 0
−2 7 4

 row reduction−−−−−−−−−−−−−→

 1 0 −2
0 1 0
0 0 0

 solutions−−−−−−−−−→

{
x1 = 2x3
x2 = 0

solution vector−−−−−−−−−−−−−−→ x = x3

 2
0
1

 basis for λ = −1 eigenspace
−−−−−−−−−−−−−−−−−−−−−−−−→

 2
0
1



(d)

(
1 2
−1 3

)
(you’ll have to work over C for this one.)

• We proceed as before, except we allow complex numbers to creep into our solutions.

det (A− λI) = det

(
1− λ 2
−1 3− λ

)
= λ2 − 4λ+ 5 = (λ− 2 + i) (λ− 2− i) ⇒ λ = 2 + i , 2− i

λ = 2 + i

(A− (2 + i) I) =

(
−1− i 2
−1 1− i

)
R2 → (1 + i)R2−−−−−−−−−−−−−−−→

(
−1− i 2
−1− i 2

)
R2 → R2 −R1−−−−−−−−−−→

(
−1− i 2

0 0

)
⇒ x1 =

2

1 + i
x2 =

2 (1− i)
(1 + i) (1− i)

x2 = (1− i)x2

⇒ x = x2

(
1− i

1

)
⇒ basis for λ = 2 + i eigenspace is

{[
1− i

1

]}
λ = 2− i

(A− (2 + i) I) =

(
−1 + i 2
−1 1 + i

)
R2 → (1− i)R2−−−−−−−−−−−−−−−→

(
−1 + i 2
−1 + i 2

)
R2 → R2 −R1−−−−−−−−−−→

(
−1 + i 2

0 0

)
⇒ x1 =

2

1− i
x2 =

2 (1 + i)

(1 + i) (1− i)
x2 = (1 + i)x2

⇒ x = x2

(
1 + i

1

)
⇒ basis for λ = 2− i eigenspace is

{[
1 + i

1

]}
3. Let V be a vector space with basis {v1, . . . , vm} .Find a basis for L (V, V ).

• Let for each i, j ∈ {1, . . . ,m} let Tij : V → V be the linear transformation defined by

Tij (a1v1 + · · ·+ amvm) = ajvi
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This gives us m2 different linear transformations. To demonstrate that this set of n2 linear trans-
formations actually constitutes a basis for L(V, V ), it suffices to show that a linear combination of
them can produce the zero transformation only if all coefficients are equal to 0F. Let

S =

m∑
i,j=1

bijTij

If S were the zero transformation it would have to vanish on each basis vector vk. But

0 = S (vk) =

m∑
i,j=1

bijTij (vk) =

m∑
i=1

bikvi ⇒ bik = 0 , k = 1, . . .m

since the basis vectors vi are linearly independent. Thus, a linear combination of the linear
transformations Tij can yield the zero transformation only if we take all the coefficients equal
to zero. Hence, the Tij are all linearly independent. Since there are m2 of them (which is the
dimension of L (V, V )), they comprise a basis for L (V, V ).

4. Suppose V is an n-dimensional vector space and T : V → V is an endomorphims of V with n linearly
independent eigenvectors v1, . . . , vn with eigenvalues ξ1, . . . , ξn. Set

f (x) =

n∏
i=1

(x− ξi)

(a) Show f (T ) = 0.

• Because V is n-dimensional and the eigenvectors v1, . . . , vn are stipulated to be linearly indepen-
dent, the vectors v1, . . . , vn will comprise a basis for V . Thus, any v ∈ V can be uniquely written
as

(1) v = a1v1 + · · ·+ anvn , a1, . . . , an ∈ F .

Now consider the operators

Si = (x− ξi)|x=T = T − ξi1.

We have

(2) SiSj = (T − ξi1)
(
T − ξj1

)
= T 2 − ξiT − ξjT + ξiξj1 =

(
T − ξj1

)
(T − ξi1) = SjSi

and so these operators all commute. Also, when Si acts on the ith eigenvector we have

(3) Sivi = (T − ξi1) vi = T (vi)− ξivi = ξivi − ξivi = 0V .

Using (3) and (2) we then have

f (T ) vi =

n∏
j=1

(
T − ξj1

)
vi = S1 · · ·Si · · ·Snvi = S1 · · ·Si−1Si+1 · · ·SnSivi = S1 · · ·Si−1Si+1 · · ·Sn0V = 0V

So f (T ) vanishes on each basis vector vi. But we can express every vector v in the form (1), we
have

f (T ) v = f (T ) (a1v1 + · · ·+ anvn) = a1f (T ) v1 + · · ·+ anf (T ) vn = 0V + · · ·+ 0V = 0V .

�

(b) Show the minimal polynomial of T is the product of the distinct factors (x− ξi) of f .

• Notice that if ξi = ξj , one doesn’t need both factors Si and Sj to produce an operator that
vanishes on both vi and vj via the argument of equation (3) in part (a). Therefore, if we use only
the Si corresponding to distinct eigenvalues, we’ll still have an operator that is a polynomial in T
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and vanishes on all of V . What we need to show is that the operator of lower degree. But we also
know that the minimal polynomials has to divide

f̃ (x) =
∏
ξi 6=ξj

(x− ξi)

since f (T ) = 0 on V . But f̃ (x) is already factored into irreducible polynomials, so any polynomial

that divides f̃ (x) must be a product of the same irreducibles, except perhaps missing some factors.

However, if you remove a factor, say (x− ξi) from f̃ (x), you end up with a polynomial whose
corresponding operator no longer vanishes on the ξi-eigenspace:

(T − ξ1) · · ·
(
T − ξi−1

) (
T − ξi+1

)
· · · (T − ξn) vi = (ξi − ξ1) · · ·

(
ξi − ξi−1

) (
ξi − ξi+1

)
· · · (ξi − ξn) vi 6= 0 because ξi 6= ξj if j 6= i.

Thus, f̃ (x) is the minimal polynomial. �

5. Show that T ∈ L (V, V ) is invertible if and only if the constant term of the minimal polynomial is not
equal to zero. Come up with an algorithm for computing T−1 from its minimal polynomial.

• Write

mT (x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn

for the minimal polynomial. By definition, mT (x) is the monic polynomial of lowest degree such
that

mT (T ) v = 0 ∀ v ∈ V .

⇒ Suppose T is invertible. Then the null space of T is {0V } and the range of T is the entire
space V . On the other hand, we have

(1) 0V = mT (T ) v ⇒ a0v = −
(
a1 + a2T + · · ·+ anT

n−1)Tv
Now if the constant term a0 equals 0F, then we have

−
(
a1 + a2T + · · ·+ anT

n−1)T (v) = 0V ∀ v ∈ V

But since the range of T is all of V , this requires

−
(
a1 + a2T + · · ·+ anT

n−1) v = 0 ∀ v ∈ V .

But this can’t be, since −
(
a1 + a2T + · · ·+ anT

n−1) is a polynomial in T of lower degree than
the minimal polynomials. So we can conclude that T being invertible requires the constant term
of the minimal polynomial for T to be non-zero.
⇐= Suppose a0 6= 0. We whant to show that T is invertible. Equation (1) still holds, and

can be rewritten as

v =
1

a0

(
a1 + a2T + · · ·+ anT

n−1)Tv ∀ v ∈ V

So
1

a0

(
a1 + a2T + · · ·+ anT

n−1)T = IL(V,V )

and so

T−1 =
1

a0

(
a1 + a2T + · · ·+ anT

n−1) .

Hence, T is invertible.

6. Two matrices A and B are said to be similar if there exists an invertible matrix C such that B = C−1AC.
Show that similar matrices have the same eigenvalues.
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• The eigenvalues a matrix A are the roots of the equation det (A− xI) = 0. Suppose B = C−1AC.
Then the eigenvalues of B will be the roots of

0 = det
(
C−1AC− xI

)
= det

(
C−1AC− xC−1C

)
= det

(
C−1 (A− xI)C

)
= det

(
C−1

)
det (A− xI) det (C)

=
1

det (C)
det (A− xI) det (C)

= det (A− xI)
Since A and B have the same characteristic polynomial, their eigenvalues must coincide.

7. Suppose T ∈ L (V, V ) has n = dimV distinct eigenvalues. Show that there exists a basis of V consisting
of eigenvectors of T . What will be the matrix of T with respect to this basis?

• The eigenvectors for distinct eigenvalues are linearly independent (see Theorem 16.11 of Lecture
16), the fact that we have as many distinct eigenvectors as the dimenion of V implies that the
corresponding eigenvectors will provide a basis B = {v1, . . . , vn} for V . Let’s write down the
matrix TBB of T corresponding to adapting the basis B for both the domain and codomain of the
linear transformation T : V → V . We have

T (vi) = λivi ⇒ the coordinate vector of T (vi) with respect to B is [0, 0, . . . , 0, λi, 0, . . . , 0]

where the non-zero entry occurs precisely in the ith slot. Thus, the matrix TBB corresponding to
the linear transformation T and and basis B will have the form

TBB =



λ1 0 · · · 0 0

0 λ2
... 0

...
. . .

...
0 · · · 0 λn−1 0
0 · · · · · · 0 λn


that is to say, TBB will be a diagonal matrix whose diagonal entries are just the eigenvalues of
T . �


