MATH 4063-5023 Solutions to Homework Set 3

1. Test for the solvability of the following linear systems (over \mathbb{R}). If the system is solvable, then express the general solution in the form of $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_0$ where \mathbf{x}_0 is a particular solution of the given linear system and \mathbf{x}_0 is the general solution of the corresponding homogeneous linear system (see the tail end of Lecture 6).

(a)

 $x_1 + x_2 + x_3 = 8$ $x_1 + x_2 + x_4 = 1$ $x_1 + x_3 + x_4 = 14$ $x_2 + x_3 + x_4 = 14$

• Reducing the augmented matrix for this system to reduced row echelon form we get

Γ	1	1	1	0	8		[1]	0	0	0	$-\frac{5}{3}$
	1	1	0	1	1	\rightarrow	0	1	0	0	$-\frac{5}{3}$
	1	0	1	1	14		0	0	1	0	$\frac{34'}{3}$
					14		0	0	0	1	$\begin{bmatrix} -\frac{5}{3} \\ -\frac{5}{3} \\ \frac{34}{3} \\ \frac{13}{3} \end{bmatrix}$

From the augmented matrix in row echelon, we can read off the unique solution

$$\begin{array}{rcl}
x_1 & = & -\frac{5}{3} \\
x_2 & = & -\frac{2}{3} \\
x_3 & = & \frac{34}{3} \\
x_4 & = & \frac{13}{3}
\end{array}$$

 So

$$\mathbf{x} = \left[-\frac{5}{3}, -\frac{2}{3}, \frac{34}{3}, \frac{13}{3} \right]$$

is the unique solution vector.

(b)

$$2x_1 + x_2 + 3x_3 - x_4 = 1$$

$$3x_1 + x_2 - 2x_3 + x_4 = 0$$

$$2x_1 + x_2 - x_3 + 2x_4 = -1$$

• Applying our augmented matrix method we get

$$\begin{bmatrix} 2 & 1 & 3 & -1 & | & 1 \\ 3 & 1 & -2 & 1 & | & 0 \\ 2 & 1 & -1 & 2 & | & -1 \end{bmatrix} \rightarrow : \begin{bmatrix} 1 & 0 & 0 & -\frac{7}{4} & | & \frac{3}{2} \\ 0 & 1 & 0 & \frac{19}{4} & -\frac{7}{2} \\ 0 & 0 & 1 & -\frac{3}{4} & | & \frac{1}{2} \end{bmatrix}$$

which leads to the following equations for the solution

$$\begin{array}{rcl} x_1 - \frac{7}{4}x_4 & = & \frac{3}{2} \\ x_2 + \frac{19}{4}x_4 & = & -\frac{7}{2} \\ x_3 - \frac{3}{4}x_4 & = & \frac{1}{2} \end{array}$$

Following our convention to regard variables as free parameters in the solution whenever they correspond to a column in the reduced row echelon form of the augmented matrix that does not contain a pivot, we take x_4 to be a free parameter, say $x_4 = s$. The above equations then allow us to also express x_1 , x_2 and x_3 in terms of s

$$x_{1} = \frac{3}{2} + \frac{7}{4}s$$

$$x_{2} = -\frac{7}{2} - \frac{19}{4}s$$

$$x_{3} = \frac{1}{2} + \frac{3}{4}s$$

$$x_{4} = s$$

 So

$$\mathbf{x} = \begin{bmatrix} \frac{3}{2} + \frac{7}{4}s, -\frac{7}{2} - \frac{19}{4}s, \frac{1}{2} + \frac{3}{4}s, s \end{bmatrix}$$
$$= \begin{bmatrix} \frac{3}{2}, -\frac{7}{2}, \frac{1}{2}, 0 \end{bmatrix} + s \begin{bmatrix} \frac{7}{4}, -\frac{19}{4}, \frac{3}{4}, 1 \end{bmatrix}$$

Here $\left[\frac{3}{2}, -\frac{7}{2}, \frac{1}{2}, 0\right]$ is a particular solution of the original system and $s\left[\frac{7}{4}, -\frac{19}{4}, \frac{3}{4}, 1\right]$ is a solution of the corresponding homogeneous system.

(c)

$$\begin{aligned} x_1 + 4x_2 + 3x_3 &= 1 \\ 3x_1 + x_3 &= 1 \\ 4x_1 + x_2 + 2x_3 &= 1 \end{aligned}$$

• Following again the augmented matrix method

$$[\mathbf{A}|\mathbf{b}] = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 3 & 0 & 1 & | & 1 \\ 4 & 1 & 2 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & \frac{1}{3} & | & 0 \\ 0 & 1 & \frac{2}{3} & | & 0 \\ 0 & 0 & 0 & | & 1 \end{bmatrix} = [\mathbf{A}'|\mathbf{b}']$$

Noting the final column vector \mathbf{b}' lies outside the column space of the final coefficient matrix \mathbf{A}' , we can conclude that the system has no solution (See Theorem 7.2.)

(d)

$$-x_1 + 2x_2 + x_3 + 4x_4 = 0$$

$$2x_1 + x_2 - x_3 + x_4 = 1$$

• Once again, row reducing the augmented matrix for the system we find

ſ	-1	2	1	4 0]	\ \	[1	0	$-\frac{3}{5}$	$-\frac{2}{5} \mid \frac{2}{5}$]
L	2	1	-1	$\begin{array}{c c} 4 & 0 \\ 1 & 1 \end{array} \right]$	\rightarrow	0	1	$\frac{1}{5}$	$\begin{array}{c c c} -\frac{2}{5} & \frac{2}{5} \\ \frac{9}{5} & \frac{1}{5} \end{array}$	$\frac{1}{5}$

From the reduced row echelon form of the augmented matrix we see that since columns 3 and 4 lack pivots, we should regard x_3 and x_4 as being free parameters in the solution.

Setting $x_3 = s_1$ and $x_4 = s_2$, and using the equations of the R.R.E.F. of the augmented matrix

$$\begin{cases} x_1 - \frac{2}{5}x_3 - \frac{3}{5}x_4 = \frac{2}{5} \\ x_2 + \frac{1}{5}x_3 + \frac{9}{5}x_4 = \frac{1}{5} \end{cases} \Rightarrow \begin{cases} x_1 = \frac{2}{5} + \frac{3}{5}s_1 + \frac{2}{5}s_2 \\ x_2 = \frac{1}{5} - \frac{1}{5}s_1 - \frac{9}{5}s_2 \end{cases}$$

We can write down a generic solution vector as

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \frac{2}{5} + \frac{3}{5}s_1 + \frac{2}{5}s_2 \\ \frac{1}{5} - \frac{1}{5}s_1 - \frac{9}{5}s_2 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{5} \\ \frac{1}{3} \\ 0 \\ 0 \end{bmatrix} + s_1 \begin{bmatrix} \frac{3}{5} \\ -\frac{1}{5} \\ 1 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} \frac{2}{5} \\ -\frac{9}{5} \\ 0 \\ 1 \end{bmatrix}$$

The last expression presents the solution in the form of a particular solution $\mathbf{x}_p = \begin{bmatrix} \frac{2}{5}, \frac{1}{5}, 0, 0 \end{bmatrix}$ plus a solution of the corresponding homogeneous system (I note that the vectors $\begin{bmatrix} \frac{3}{5}, -\frac{1}{5}, 1, 0 \end{bmatrix}$ and $\begin{bmatrix} \frac{2}{5}, -\frac{9}{5}, 0, 1 \end{bmatrix}$ actually constitute a basis for the solution space of the corresponding homogeneous system.)

2. Prove that an $n \times m$ system of homogeneous equations has a non-trivial solution if and only if the rank of the coefficient matrix is less than m.

• By Corollary 9.4, the solution space of an $n \times m$ system is equal to the number of columns m of the coefficient matrix minus its rank. This implies in particular that

 $m-r \ge 0.$

Now if m = r, the solution space is 0-dimensional. But there is only one 0-dimensional subspace of \mathbb{F}^m , namely $\{0\}$. On the other hand, it also clear that in order to have a non-trivial solution (a solution other than $\mathbf{x} = \mathbf{0}$), we will need a solution space with positive dimension. Thus, for non-trivial solutions we require r < m.

3. Find a set of homogeneous linear equations whose solution set is the subspace of \mathbb{R}^3 generated by the vectors [2, 1, -3], [1, -1, 0] and [1, 3, -4].

• We follow the method of Example 10.7. Let S^* be the solution set of (the equations corresponding to the condition that each **x** in S is perpendicular to the generators of S = span([2, 1, -3], [1, -1, 0], [1, 3, -4]) >

$$2x_1 + x_2 - 3x_3 = 0$$

$$x_1 - x_2 = 0$$

$$x_1 + 3x_2 - 4x_3 = 0$$

A basis for the solution set can be obtained via our row reduction method

$$\begin{bmatrix} 2 & 1 & -3 & | & 0 \\ 1 & -1 & 0 & | & 0 \\ 1 & 3 & -4 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = x_3 \\ \Rightarrow \mathbf{x} \in span\left([1, 1, 1]\right) \end{cases}$$

To find the equations for S we demand that each $\mathbf{y} \in S$ be perpendicular to such an $\mathbf{x} \in S^*$. Thus,

 $S = S^{**}$ = solution set of $x_1 + x_2 + x_3 = 0$

4. Let S be a subspace of a vector space V. Prove that if **p** and **q** are vectors belonging to the hyperplane $M = H_{\mathbf{x}_0,S} = {\mathbf{x}_0 + \mathbf{s} \mid \mathbf{s} \in S}$, then the line through **p** and **q** lies entirely in M.

• Since $\mathbf{p}, \mathbf{q} \in M$, we have

 $\begin{aligned} \mathbf{p} &= \mathbf{x}_0 + \mathbf{s} & \text{ for some } \mathbf{s} \in S \\ \mathbf{q} &= \mathbf{x}_0 + \mathbf{s}' & \text{ for some } \mathbf{s}' \in S \end{aligned}$

The line through \mathbf{p} and \mathbf{q} can be formed by starting at \mathbf{p} and then heading off in the direction $\mathbf{q} - \mathbf{p}$.

line through \mathbf{p} and $\mathbf{q} = \{\mathbf{x} = \mathbf{p} + t (\mathbf{q} - \mathbf{p}) \mid t \in \mathbb{R}\}$

Note that when t = 0, $\mathbf{x} = \mathbf{p}$ and that when t = 1 we have $\mathbf{x} = \mathbf{q}$, so this is certainly the line we want. Now let

$$\mathbf{y} = \mathbf{p} + i\left(\mathbf{q} - \mathbf{p}\right)$$

be an arbitary point on this line. We then have

$$\mathbf{y} = (\mathbf{x}_0 + \mathbf{s}) + t \left((\mathbf{x}_0 + \mathbf{s}') - (\mathbf{x}_0 + \mathbf{s}) \right)$$
$$= \mathbf{x}_0 + \mathbf{s} + t\mathbf{x}_0 + t\mathbf{s}' - t\mathbf{x}_0 - t\mathbf{s}$$
$$= \mathbf{x}_0 + (1 - t)\mathbf{s} + t\mathbf{s}'$$

5. Find the point in \mathbb{R}^3 where the line joining the points [1, -1, 0] and [-2, 1, 1] pierces the plane $3x_1 - x_2 + x_3 = 1$.

• The points on the line joining [1, -1, 0] and [-2, 1, 1] are given by

$$[x_1, x_2, x_3] = [1, -1, 0] + t ([-2, 1, 1] - [1, -1, 0]) = [1 - 3t, -1 + 2t, t]$$

Or

$$\mathbf{x} = \begin{bmatrix} 1 - 3t \\ -1 + 2t \\ t \end{bmatrix}$$

Such a vector would also arise as the general solution to a linear system with augmented matrix in reduced row echelon form

$$\left[\begin{array}{rrrr|rrr} 1 & 0 & 3 & 1 \\ 0 & 1 & -2 & -1 \end{array}\right]$$

and so the linear system

$$\begin{array}{rcrcr} x_1 + 3x_3 & = & 1 \\ x_2 - 2x_3 & = & -1 \end{array}$$

To find the intersection of the given line with the plane $3x_1 - x_2 + x_3 = 1$ we simply try to solve all three equations simultaneously

Following our by now standard procedure

$$\begin{bmatrix} 1 & 0 & 3 & | & 1 \\ 0 & 1 & -2 & | & -1 \\ 3 & -1 & 1 & | & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & | & \frac{1}{10} \\ 0 & 1 & 0 & | & -\frac{2}{5} \\ 0 & 0 & 1 & | & \frac{3}{10} \end{bmatrix}$$

we can conclude that unique solution to our problem is the vector with coordinates

$$x_1 = \frac{1}{10}$$
 , $x_2 = -\frac{2}{5}$, $x_3 = \frac{1}{10}$