
MATH 4063-5023
Solutions to Homework Set 2

1. Use elementary row operations to systematically transform the following matrices to row echelon form.

(a)

 1 2 1 0
2 3 0 −1
1 2 1 −1


• We have  1 2 1 0

2 3 0 −1
1 2 1 −1

 R2 → R2 − 2R1

R3 → R3 −R1
 

 1 2 1 0
0 −1 −2 −1
0 0 0 −1


The matrix on the far right is in row echelon form

(b)

 1 1 2
0 2 −1
1 2 4


•  1 1 2

0 2 −1
1 2 4

 R3 → R3 −R1  

 1 1 2
0 2 −1
0 1 2


R1 ←→ R2  

 1 1 2
0 1 2
0 2 −1


R3 → 2R2  

 1 1 2
0 1 2
0 0 −3


The last matrix is in row echelon form.

(c)

 2 −1 1 2
3 0 1 1
0 3 −1 −4


•  2 −1 1 2

3 0 1 1
0 3 −1 −4

 R2 → R2 −
2

3
R3  

 2 −1 1 2
0 2

3
1
3 − 1

3
0 3 −1 −4


R3 → R3 −

9

2
R2  

 2 −1 1 2
0 2

3
1
3 − 1

3
0 0 − 5

2 − 5
2


The last matrix is in row echelon form.

2. Test the following sets of vectors for linear independence.

(a) {[−1, 1] , [1, 2] , [1, 3]}

• Note that each vector lies in the span of {[1, 0] , [0, 1]}. But any set of three vectors in a subspace
generated by two vectors must be linearly independent (see Theorem 3.3 in the online lecture
notes). Thus, three stated vectors must be linearly dependent.
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(b) {[0, 1, 1, 2] , [3, 1, 5, 2] , [−2, 1, 0, 1] , [1, 0, 3,−1]}

• We write the four given vectors as the rows of a 4× 4 matrix.
0 1 1 2
3 1 5 2
−2 1 0 1
1 0 3 −1


This matrix row reduces to

:


5 0 0 4
0 5 0 13
0 0 5 −3
0 0 0 0


and so the subspace generated by the given four vectors is coincides with the subspace generated
by the three non-zero rows of the matrix in row echelon form. Therefore, by Theorem 3.3, the
original set of four vectors must be linearly dependent.

(c) {[1, 1, 0, 0, 1] , [−1, 1, 1, 0, 0] , [2, 1, 0, 1, 1] , [0,−1,−1,−1, 0]}

• We write the four given vectors as the rows a 4× 5 matrix
1 1 0 0 1
−1 1 1 0 0
2 1 0 1 1
0 −1 −1 −1 0


This matrix can be row reduced to

1 0 0 1 0
0 1 0 −1 1
0 0 1 2 −1
0 0 0 0 0


The zero row at the bottom indicates the original set of vectors was linearly independent (essentially
the same argument as in part (b)).

3. Test the following sets of polynomials for linear dependence.

(a)
{
x2 + 2x+ 1, 2x+ 1, 2x2 − 2x− 1

}
• Each of polynomials lies in the vector space P2 of polynomials of degree ≤ 2. If we adopt the

natural basis
{

1, x, x2
}

for P2, the corresponding coefficient matrix is 1 2 1
1 2 0
−1 −2 2


This matrix row reduces to  1 2 1

0 0 −1
0 0 0


Since the row echelon form of the coefficient matrix has a zero row, it must be that the original
set of 3 polynomials is a linearly dependent set. (See Theorem 4.15 (c).)

(b)
{

1, x− 1, (x− 1)
2
, (x− 1)

3
}



3

• Each polynomial in the list lies in P3 = span
{

1, x, x2, x3
}

, which is a linearly independent
set of four polynomials. The coefficient vectors of these polynomials with respect to the basis{
x3, x2, x, 1

}
of P3 are

1 = 1 · 1 ⇒ [0, 0, 0, 1]

x− 1 = (1) · x+ (−1) · 1 ⇒ [0, 0, 1,−1]

(x− 1)
2

= (1) · x3 + (−2) · x+ (1) · 1 ⇒ [0, 1,−2, 1]

(x− 1)
3

= (1) · x3 + (−3) · x2 (1) · 1 + (3) · x+ (−1) · 1 ⇒ [−1, 3,−3, 1]

So the coefficient matrix of these four polynomials with respect to the basis
{
x3, x2, x, 1

}
of P3 is

0 0 0 1
0 0 1 −1
0 1 −2 1
1 −3 3 −1


which is row equivalent to 

1 −3 3 −1
0 1 −2 1
0 0 1 −1
0 0 0 1


which is in row echelon form. By Theorem 4.15(c) we can conclude that the original set of four
polynomials is a linearly independent set.

4. Determine if [1, 1, 1] belongs to the subspace of R3 generated by [1, 3, 4] , [4, 0, 1] , [3, 1, 2]. Explain your
reasoning.

• Let’s first consider the span of the three vectors ∈ R3. Let’s first find a basis for spanR ([1, 3, 4] , [4, 0, 1] , [3, 1, 2]) .
This we do by writing the vectors as the rows of a 3× 3 matrix and row reducing that matrix to
row echelon form:  1 3 4

4 0 1
3 1 2

 row reduces to

 1 0 1
4

0 1 5
4

0 0 0


From this we conclude that any vector in spanR ([1, 3, 4] , [4, 0, 1] , [3, 1, 2]) can be expressed as a vec-
tor in spanR

([
1, 0, 14

]
,
[
0, 1, 54

])
. We now check to see if [1, 1, 1] when adjoined to

{[
1, 0, 14

]
,
[
0, 1, 54

]}
forms a linearly dependent set. Thus we look at the matrix 1 0 1

4
0 1 5

4
1 1 1


, row echelon form:

 1 0 0
0 1 0
0 0 1

which row reduces to

 1 0 0
0 1 0
0 0 1


i.e. a matrix with three linearly independent row vectors. We conclude that [1, 1, 1] lies outside
spanR

([
1, 0, 14

]
,
[
0, 1, 54

])
= spanR ([1, 3, 4] , [4, 0, 1] , [3, 1, 2]) . Thus, [1, 1, 1] can not be written

as a linear combination of [1, 3, 4] , [4, 0, 1] , and [3, 1, 2].

5. Prove every subspace S of a finitely generated vector space is finitely generated and that dimS ≤ dimT
with equality only if S = T .
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• Let S be a subspace of a finitely generated vector space V . Since V is finitely generated, V
has a basis {b1, . . . , bn} (see Theorem 5.2). Pick a nonzero element s1 of S. If S = span (s1)
then we are done as s1 generates S. Otherwise, there must be another vector s2 ∈ S such that
s2 /∈ span (s1). If S = span (s1, s2), then S is generated by s1 and s2 and we are done. Note that
since s2 /∈ span (s1), s1 and s2 are linearly indepenent. If S 6= span (s1, s2), there must be a third
linearly independent vector s3 and either S = span (s1, s2, s3) or there is a vector s4 ∈ S that lies
outside of span (s1, s2, s3) and so is linearly independent of s1, s2, s3.

In this fashion we either end up with a finite list of linearly independent generators for S (we
stop the process of finding a new si once S = span (s1, . . . , si−1)), or we have an infinite sequence
{s1, s2, . . . , } of linearly independent elements of S. But the latter situation is impossible - because
by Theorem 3.3 we can not have more than n = dimV linearly independent vectors in V . Thus,
the process described in the first paragraph must terminate after finitely many steps; say after m
steps, with m ≤ n.

Now suppose the algorithm terminates after exactly n steps and suppose V 6= span (s1, . . . , sn).
Then there must be a non-zero element v ∈ V that lies outside the span of s1, . . . , sn. On the
other hand, by Theorem 3.3, the vectors {s1, . . . , sn, v} being a set of n + 1 vectors in a vector
space generated by n vectors must be a linearly dependent set. We can then in the situation of
Lemma 5.1, which tells us that in fact, v must be expressible as a linear combination of s1, . . . , sn,
which contradicts our hypothesis that V 6= span (s1, . . . , sn). We thus conclude that whenever a
subspace S has the same number of linearly independent generators as the vector space V that
contains it, we must have S = V .

6. Let F be a field with exactly two elements (it will be isomorphic to Z2) and let V be a 2-dimensional
vector space over F. How many vectors are there in V ? How many different bases are there for V ?

• The main point of this problem is to do as much as possible in the abstract, without using any
explicit realization of F or V . Thus, even though one might know that any field with only two
elements is isomorphic to Z2, we will avoid doing calculations in Z2.

Instead, we’ll use the field axioms to deduce that F = {0F, 1F}. For as a field F has to contain
an additive identity 0F and a multiplicative identity 1F, It is easy to see that these can be the same
if and only if F is a 1-element field. Therefore, our 2-element field has to be precisely {0F, 1F}.

Next, let’s consider a general 2-dimensional vector space V over F. Since it is 2-dimensional,
it has a basis (otherwise it would not even have a dimension). Let B = {b1,b2} be such a basis.
The problem now is to count the other possible bases.

Since B is a basis for V we have

V = spanF (b1,b2)

= {a1b1 + a2b2 | a1, a2 ∈ F}

Since F is finite, we can list all possible elements of V :

V = {0F · b1 + 0Fb2, 1F · b1 + 0F · b2, 0F · b1 + 1F · b,1F · b1 + 1F · b}
= {0V ,b1,b2,b1 + b2}

So we have exactly 4 vectors in V . Since V is 2-dimensional, any basis for V will consist of precisely
2 vectors. We can exclude right away the pairs {u,v} where one of the vectors is 0V . Because it
is trivial to construct a dependence relation involving the 0-vector. Thus, we need to look at the
other possible pairs

{b1,b2} , {b1,b1 + b2} , {b2,b1 + b2}
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The first pair is already known to be a basis. To see that the second pair is a linearly independent
set, suppose

αb1 + β (b1 + b2) = 0V

⇒ (α+ β)b1 + βb2 = 0

⇒ α+ β = 0F and β = 0F since {b1,b2} is a basis

⇒ α = 0F and β = 0F

⇒ {b1,b1 + b2} are linearly independent

⇒ {b1,b1 + b2} is a basis for V

Similarly, one shows that last pair {b2,b1 + b2} is a set of linearly independent vectors and so
much be a basis for the two dimensional space V .

We thus find that there are exactly 3 bases for V.


