
Math 4063-5023
SOLUTIONS TO FIRST EXAM

9:00 – 10:15 am, Oct 2, 2014

You must write your answers in complete sentences and full detail to receive full credit.

1. Definitions. Write down the precise definitions of the following notions. (5 pts each)

(a) subspace

• A subset S of a vector space V over a field F is a subspace if S is closed under both scalar
multiplication and vector addition; i.e.,

s ∈ S , λ ∈ F ⇒ λs ∈ S
s, s′ ∈ S ⇒ s + s′ ∈ S

(b) dependence relation.

• A dependence relation amongst a set of vectors {v1,v2, . . . ,vk} is an valid equation of the form

a1v1 + a2v2 + · · ·+ akvk = 0V

where the coefficients a1, a2, . . . , ak are elements of the underlying field with at least one ai 6= 0F.

(c) linearly independent set of vectors

• A set of vectors is linearly independent if there are no dependence relations amongst the vectors.

(d) span of a set of vectors

• The span of a set of vectors {v1, . . .vk} is the set of all possible linear combinations of these
vectors; i.e.,

span (v1, . . . ,vk) = {a1v1 + · · ·+ akvk | a1, . . . , ak ∈ F}

(e) basis for a vector space

• A basis for a vector space V is a set of linearly independent vectors spanning V .

(f) n×m homogeneous linear system

• A homogeneous linear system is a set of n linear equations in m unknowns of the form

a11x1 + a12x2 + · · ·+ a1mxm = 0F

a21x1 + a22x2 + · · ·+ a2mxm = 0F
...

an1x1 + an2x2 + · · ·+ anmxm = 0F

2. (15 pts) Suppose S and T are subspaces of a vector space V . Prove that S ∩ T is also a subspace of V .

• In view of Proposition 4 on the last page it suffices to show that v,u ∈ S ∩T and λ, µ ∈ F implies
that λv+µu ∈ S ∩T . Now v,u ∈ S ∩T ⇒ v,u ∈ S; and since S is a subspace, λv+µu ∈ S
for all λ, µ ∈ F. Similarly, v,u ∈ S ∩ T ⇒ v,u ∈ T ⇒ λv + µu ∈ T . Finally,

λv + µu ∈ S
λv + µu ∈ T

}
⇒ λv + µu ∈ S ∩ T

and we’re done.
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3. (20 pts) Prove that if S is a subspace of a finite dimensional vector space and dim (S) = dim (V ), then
S = V .

• Let {s1, . . . , sn} be a basis for S and {v1, . . . ,vn} be a basis for V (these two bases have the same
cardinality since, by hypothesis, dim (S) = dim (V )). Since each si ∈ V , we have

span (s1, . . . , sn) ⊆ V
If span (s1, . . . , sn) 6= V , then there must exist a non-zero vector v ∈ V that does not lie in
span (s1, . . . , sn). I claim {s1, . . . , sn,v} is a linearly indepdent set. For if we had a dependence
relation

a1s1 + · · ·+ ansn + bv = 0V

then either (i) b = 0F and we have a dependence relation amongs the basis vectors for S (which is
impossible since basis vectors are linearly independent) or (ii) b 6= 0F and we have an equation of
the form

−1

b
(a1s1 + · · ·+ ansn) = v

But this can’t happen either since the left hand side is in span (s1, . . . , sn) but v /∈ span (s1, . . . , sn).
Therefore no such v can exist. We conclude

S = span (s1, . . . , sn) = V

4. (15 pts) Let

p1 = 1 + x− 2x2 + x3 , p2 = 1− 2x2 + 2x3 , p3 = x− x3 , p4 = 1 + 3x− 2x2 − x3 .

Find a basis for S = span (p1, p2, p3, p4).

• B =
{

1, x, x2, x3
}

is a basis for the polynomials of degree ≤ 3. With respect to this basis, the
coordinate vectors for p1, p2, p3, and p4 are

p1 ←→ 1, 1,−2, 1 , p2 ←→ [1, 0,−2, 2] , p3 ←→ [0, 1, 0,−1] , p4 ←→ [1, 3,−2,−1]

and so the coefficient matrix (see Theorem 10 on the last page) for [p1, p2, p3, p4] is
1 1 −2 1
1 0 −2 2
0 1 0 −1
1 3 −2 −1

 R2 → R2 −R1

R3 → R3 −R1
−−−−−−−−−−−−→


1 1 −2 1
0 −1 0 1
0 1 0 −1
0 2 0 −2

 R3 → R3 +R2

R4 → R4 + 2R2
−−−−−−−−−−−−−→


1 1 −2 1
0 −1 0 1
0 0 0 0
0 0 0 0


Evidently, the row space of the coefficient matrix is spanned by the two linearly independent
vectors [1, 1,−2, 1] and [0,−1, 0, 1]. The corresponding polynomials 1 + x− 2x2 + x3 and −x+ x3

will be a basis for span (p1, p2, p3, p4.):

span (p1, p2, p3, p4) = span (p1, p3)



3

5. (15 pts) Find a basis for the solution set of the following homogneous linear system.

x1 − x3 + 2x4 = 0

x2 + x3 − x4 = 0

2x1 + x2 − x3 + 3x4 = 0

• First we row-reduce the augmented matrix this system is to reduced row echelon form: 1 0 −1 2 0
0 1 1 −1 0
2 1 −1 3 0

 →

 1 0 −1 2 0
0 1 1 −1 0
0 0 0 0 0


The first two columns of the RREF contain the its pivots, so variable x1 and x2 will be regarded
as the variables-we-can-solve-for. That leaves x3 and x3 as free parameters. Writing down the
equations corresponding to matrix in RREF and moving the free parameters to the right hand
side yields

x1 − x3 + 2x4 = 0
x2 + x3 − x4 = 0

0 = 0

 ⇒ x1 = x3 − 2x4
x2 = −x3 + x4

Therefore, a general solution vector will be

x =


x1
x2
x3
x4

 =


x3 − 2x4
−x3 + x4

x3
x4

 = x3


1
−1
1
0

+ x4


−2
1
0
1


Therefore, {[1,−1, 1, 0] , [−2, 1, 0, 1]} will provide a basis for the solution space of the homogeneous
linear system.

6. (20 pts) Use Lemma 14 (on last page) to prove that an n ×m linear system Ax = 0 has a nontrivial
solution if and only if rank (A) < m.

• Let [c1, c2, . . . , cm] be the columns of A and let x = [x1, . . . , xm] be a solution of Ax = 0, then
by Lemma 14 we have

x1c1 + x2c2 + · · ·+ xmcm = 0

This would constitute a dependence relation amongst the column vectors if any of the components
of x are non-zero. Thus, we can have non-trivial solutions only if the columns of A are linearly
dependent. This would, in turn, imply that

non-trivial solution ⇒ rank (A) ≡ dim (ColSp (A)) < #columns = m

On the other hand, if rank (A) < m, then the columns of A are linearly dependent, and so there
is a dependence relation of the form

a1c1 + · · ·+ amcm = 0

with not all ai = 0F. But then setting x = [a1, . . . , am] we would have a non-trivial solution of
Ax = 0.
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Basic Theorems

The statements listed below you can cite and use without proof in your solutions.

Proposition 1. The zero vector 0V of a vector space is unique.

Proposition 2. Let V be a vector space over a field F. Then 0F · v = 0V for all v ∈ V .

Proposition 3. If S is a subspace of a vector space V , then 0V ∈ S.

Proposition 4. A subset S of a vector space V over a field F is a subspace if and only if every linear
combination of the form αv + βu with α, β ∈ F , v, u ∈ S is in S.

Proposition 5. span (v1, . . . vk+1) = span (v1, . . . , vk) if and only vk+1 ∈ span (v1, . . . , vk).

Theorem 6. Let S be a subspace of a vector space V over a field F. Suppose S is generated by n vectors
v1, . . . , vn. Let {w1, . . . , wm} be a set of m vectors in S with m > n. Then the vectors {w1, . . . , wm} are
linearly dependent.

Corollary 7. Suppose {v1, . . . , vn} and {w1, . . . , wm} are two bases for a subspace S. Then n = m.

Proposition 8. Let [v1, . . . , vn] be an n ×m matrix. If an elementary operation (see Corollary 4.2 and
Definition 4.3) is applied to this list of vectors, the new list of vectors is matrix that has the same row space.
More generally, if M is a matrix and M′ is a matrix obtained from M by applying a sequence of elementary
row operations to the (row) vectors of M (and the intermediary matrices). Then

RowSp (M′) = RowSp (M)

Proposition 9. Let A be an n ×m matrix. Then there exists a sequence of elementary operations that
converts A to a matrix in row echelon form.

Theorem 10. Let V be an m-dimensional vector space with basis B = [v1, . . . , vm] and A be the coefficient
matrix of a set of n non-zero vectors [u1, . . . , un] with respect to B. Suppose that the row vectors r1, . . . , rn ∈
Fm of A are in row echelon form. Then the vectors u1, . . . , un are linearly independent.

Lemma 11. If {v1, . . . , vm} is a linearly dependent set and if {v1, . . . , vm−1} is a linearly independent set
then vm can be expressed as a linear combination of v1, . . . , vm−1.

Theorem 12. Every finitely generated vector space has a basis.

Theorem 13. Let V = spanF (v1, . . . , vm) be a finitely generated vector space. Then a basis for V can be
selected from among the set of generators {v1, . . . , vm}. In other words, any set of generators for a finitely
generated vector space V contains a basis for V .

Lemma 14. Suppose A is an n ×m matrix with column vectors [c1, c2, . . . , cm] and x is a n × 1 column

vector with entries


x1
x2
...
xm

. Then

Ax = x1c1 + x2c2 + · · ·+ xmcm .

Theorem 15. Consider a n ×m linear system with coefficient matrix A and inhomogenous part b ∈ Fn.
For each i between 1 and n, let ci denote the element of Fn formed by writing the entries in the ith column
of A in order (from top to bottom). Then the linear system has a solution if and only if either of the
following two conditions is satisfied.

(i) b ∈ span (c1, . . . , cm)
(ii) dim span (c1, . . . , cm) = dim span (c1, . . . , cm,b)

Proposition 16. Let x be a solution of an n ×m linear system S (A,b), and let S be the solution set of
the corresponding homogeneous linear system S (A,0). Then the solution set of S (A,b) coincides with the
hyperplane through x generated by S.

Theorem 17. The reduced row echelon form of an n×m matrix A is unique.

Proposition 18. If [B | c] is a matrix in reduced row echelon form obtained from [A | b] by a sequence of
elementary row operations, then the solutions to the linear system corresponding to [A | b] will be the same
as the solutions to the linear system corresponding to [B | c].

Theorem 19. Let A be an n×m matrix, then the row space of A equals the dimension of its column space.


