LECTURE 19

The Cayley-Hamilton Theorem and the Jordan Decomposition

Let me begin by summarizing the main results of the last lecture. Suppose T is a endomorphism of a
vector space V. Then T has a minimal polynomial that factorizes into a product of powers of irreducible
polynomials

(1) my (z) = py (x)™ - -pr ()™
These irreducible factors can then be used to construct certain polynomials fi (z),..., fx () and corre-

sponding operators F; = f; (T') which can be used to decompose the vector space V into a direct sum of
T-invariant subspaces

V=VioVe oV
Morever, we have both V; = E; (V) (the image of V under E;) and V; = ker (p; (T")**) (the kernel of the
operator p; (T)*"). Since each V; is T-invariant

veV; = TWeV

it follows that if we construct a basis by V by first choosing bases for each subspace V; and then adjoining
these bases to get a basis B for the entire vector space V', then with respect to B, the matrix T will take
the block diagonal form

A, 0O - .. 0
0 A, 0
App = :
. Ak—l 0
0 o - 0 A,

What we aim to show in this lecture is that the submatrices A; (which describe how T operators on the
subspace V;) can chosen to be upper triangular. A little more precisely, we shall show that we can always
chose a basis for a given V; so that the corresponding matrix A; is upper triangular.

In what follows below we shall be making a special assumption about the factorization (1) of the minimal
polynomial; namely

(2) Assumption : Each irreducible factor of my is of the form p; (z) =2 —¢;

where, of course, {; is some eigenvalue of T. We note that whenever we are working over an algebraically
closed field (like C) this assumption on mp will hold automatically. So we have

() mr (@)= (@— &) - (w— &), with& A& i)

Now the first thing to point out is that since the subspaces V; are also the kernel of the operators (p; (T))*" =
(T — £;1)%, if we defined operators
Ni =T - 511
then
(N v =0y V v eV; =ker((N;)*)
Thus, when we restrict the action of N; to its corresponding subspace V;, the sﬁh power of N; vanishes
identically. One says that N; acts nilpotently on V.
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1. Digression: Nilpotent Transformations

DEFINITION 19.1. A linear transformation N : W — W of a vector space W is said to be nilpotent if there
exists a positive integer k such that N* = Orw,w)- If N is nilpotent and s is the minimal integer such that
N* = 0pw,w) we say that N is s-nilpotent.

LEMMA 19.2. If N is m-nilpotent, then its minimal polynomial is

my (z) =™

Proof. By the definition of m-nilpotent, we certainly have
NWL — 0

and so, by Theorem 16.8, the minimal polynomial of N must divide ™. Since =™ is a power of a single
irreducible polynomial (z — 0), the only possibilities for my (z) are other are polynomials of the form
(z — 0)* with k < m. But we still have to had

0r(v.v)=my (N)=N*
but since m is the smallest & such that N* = 0, we must have
my () = (z —0)"
O

LEMMA 19.3. Let N € L(V,V) be a nilpotent endomorphism of a finite-dimensional vector space V' over
an algebraically closed field. Then W has a basis {w1,ws, ..., w,} such that

N (’Ul) = OV
N (vy) €  spang (v1)
€

N (v3) spang (v, v2)

N (v,) € spang (v1,v2,...,0n—1)

Proof. Since N is nilpotent, for sufficient large k we must have N* = 0 L(w,w)- Let m be the mininal such
k (so N is m-nilpotent). By the preceding lemma, the minimal polynomial of N is then

my (x) =z™

Now consider the following family of subspaces of V'

Vo = ={0}
Vi : =ker(N)
Vo + =Kker (NQ)
Vine1 =  ker (Nm_l)
Vi = ker(N")=V
I claim V; is a proper subspace of V; ;1 for i = 0,...,m — 1. Indeed, if v € V;, then Nv = 0 and so also

Nitly = 0 as well; so certainly V; C V1. To see that V; is, in fact, a proper subspace of V;,1, we argue
as follows. Since m is the minimal power of N such that N™ = 0py,y) there has to be a vector w that
survives N™~ 1L
Niw#0 ifi<m but N"w=0
Set
Wi4+1 = Nm_i_lw
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Then
Niw;i g =N""1w#0
but
N”lwiﬂ =N"w=0
So

wip1 € Vi but w1 € Vig.
Thus, each V; is a proper subset of V1.

And so we have the following chain of proper subspaces
owtCVicVeC - CVyu V=V

Next we note that
N(V;) C Vi
Indeed, if v € V;, we have N'v = 0. But then Nv will satisfy N*~! (Nv) = 0, and so Nv € V;_;.

Ok. We are now ready to construct a basis B of V that has the property

N (v;) C span (v1,...,v;—1) .
To do this we just apply Theorem 5.4 repeatedly. Let k; = dim V;. Since V; is a subspace it has a basis
B, = {vgl), e ,v,ill)}. Since V; is a subspace of V5, by Theorem 5.4, V5 has a basis By that extends the

basis By of V.
1 1 (2 2
By = {v§ ),...,v,(C ),v,(cllrl,...,v,(%)}

Then, in a similar fashion, we can extend By to a basis B3 of V3, B3z to a basis B4 of V4, and so on. In the
end, we’ll arrive at a basis

B = {vgl),...,v,(i),vl({a_17...,vr(lm)} of V,, =V
Now because
NV; C Vi
we will have to have } A
N (v](»l)) € Vi_1 = span (v?), . ,v,it?)

And in fact, by the way we ordered to lower indices on the basis elements v](-i), we have k;_1 < 7 < k;. Thus,

N (v;i)) € span (vgl), e ,U](:;l)) C span (v§1)7 . ,vl(f:l) v,(c?_lﬂ, - ,v](.i_)l)

which, is the statement we sought to prove (by simply ignoring the upper indices, which after all are just a
notational device to indicate how we constructed the basis B). ]

REMARK 19.4. Another way of framing this result is as follows. If N is a nilpotent operator acting a
finite-dimensional vector space W, then there exists a basis B for W such the matrix of NV with respect to
B is an upper triangular matrix with 0’s along the diagonal:

0 = *
0 0 *
Npp =
0 0 0
To see this, consider the j** column vector c; of Npp.
C; = N (’Uj)B
Since N (v;) € span (v1,...,vj_1), the coordinates of N (v;) with respect to vj,vj41,...,v, must all be 0.

So we have
(NBB)ij :(cj)i:() if 22]
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So if we say that n x n matrix A is strictly upper triagular whenever its entries satisfy
Ay =0 whenever j <1

then the preceding theorem can be rephrased more succinctly as saying:

e If N € L(V,V)isanilpotent transfomation, there exists a basis for V' such that matrix representing
N is strictly upper triangular.

REMARK 19.5. Another observation on can make is that if N € L (W, W) is nilpotent and s is the minimal
integer such that N*° = Opw,). Then W has to be at least s dimensional (because each application of N
confines a vector to a smaller and smaller subspace of W. Cf. equation (3)).

THEOREM 19.6. Let T € L(V,V) and suppose T has a minimal polynomial of the form
mr (z) = (z —a1)™ - (s — ax)™

Then there exists a basis {vi,...,vn} of V such that the matriz Ar of T with respect to this basis has a
block diagonal form

A, 0O - ... 0
0 A 0
Ap =
. Ak—l 0
o o -- 0 Ay
and, moreover, submatrix A; along the diagonal is of the form
(67 *
0 (673
A; =
0 0 - o

with only zero entries appearing below the diagonal. Moreover, the sizes of these submatrices A; is > s;.

Proof. We have already remarked at the beginning of this lecture how (via Theorem 17.17) how the minimal
polynomial m¢ of T leads to a direct sum decomposition of V' into T-invariants subspaces

V=VieoWhe el

each subspace corresponding to a particular irreducible factor occuring in the minimal polynomial. In fact,
any basis of V' constructed by adjoining bases of the direct summands V7,...,V} will cast A in this block
diagonal form. What we need to show is that we can adopt bases B; of the individual subspace V; so that
when T is restriced to V; its matrix (with respect to the basis B; of V;) is upper triagular.

Now recall the subspaces V; can be identified with the kernel of the operator (p; (T))* = (T — «;1)®". This
means the operator (T' — a;1) is a nilpotent operator on V;. By the preceding lemma then, there exists a
basis for V; such that T'— «;1 is upper triagular with zeros along the diagonal. Thus

0 = ---
0 0 *
(T—@iI)BB:
0 0 0
and so
0 * --- x a; 0 0 o
0 0 * 0 0 0 a4
Top=| . S : S - : .
o0 --- 0 0o 0 - o 0O 0 - o

Finally, we point out that since (T"— ;1) is s;-nilpotent on V;, the dimension of V; has to be at least s;.
O
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COROLLARY 19.7. Let V' be a vector space over an algebraically closed field and let T € L(V,V). Then the
minimal polynomial of T divides the characteristic polynomial of T .

Proof. Let
(4) mr (@) = (@ — a1)" o+ (0 — o)™

be the minimal polynomial of T' (guaranteed to be of this form since the underlying field is algebraically
closed). By the preceding theorem we can find a basis B for V such that the matrix for 7" with respect to
B takes an upper triangular form, with entries ay, ... ay along the diagonal. Then (Tgp — 21) will also be
upper triangular, but with entries a; — = along the diagonal. Since the determinant of an upper triangular
matrix is just the product of diagonal elements, we will have

pr (z) = det (Tpp — 21) = (0 — 2)™ -+ w (o — )™

where d; is the size of the submatrix A; (d; = dimV;). As remarked at the end of the proof of Theorem
18.5, we have d; > s;. Thus, minimal polynomial will divide the characteristic polynomial. O

COROLLARY 19.8 (Cayley-Hamilton). If T € L(V,V), and pr (x) is its characteristic polynomial, then
pr (T) = Or(v.y).-

Proof. By preceding corollary,
pr (x) = q(z) my ()
for some polynomial ¢ (x). But then

pr (\T) =q(T )mr (T) =q(T )Orw,v) = Orw,v)

2. The Jordan Decomposition

Let V be a vector space over an algebraically closed field. We have seen that the minimal polynomial myp
of a linear transformation T' € L (V, V') provides us a natural direct sum decomposition of a vector space V'

V=VieVe oV
such that T" acts invariantly and, in fact, upper-triagularly on each subspace V;. We’ll now see that T itself

decomposes in a particular nice, predictable way.

LEMMA 19.9. If T € L(V,V) is diagonalizable. Then its restriction to any T-invariant subspace W of T is
diagonalizable.

Proof. If T is diagonalizable, then its minimal polynomial is of the form
(4) mr(x)=(z—a1) - (x — ag) , o Fayifi#gj

where aq, ..., a, are the eigenvalues of T. Suppose W is a T-invariant subspace of V. Then any power of
T, or indeed, any polynomial in 7" will preserve W. Because of this,

F(Tlw) = fF(Dlw = F (Thw
that is to say the restriction of any polynomial in 7" to W makes sense and, in fact, it amounts to the same
polynomial f “evaluated” at the restriction Ty, of 7' to W. In particular, we’ll have

Orvivy =mr (T) = Orww) =mr (Tly)
Now it should be pointed out that this does not imply that mr is also the minimal polynomial of T,
indeed, it might not be (e.g. if W were comprised of a single eigenspace then mp| = (z — «;)) , it does
imply that the minimal polynomial of 7’|, must divide ms. Because of the factorization (4) of my, it
must then be that the minimal polynomial of 7’|y, contain the same kind of factors. In other words, the
minimal polynomial of T'|;, will also have the form (4), except with possibly some factors missing. But
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then having a minimal polynomial of the form (4) means, there exists a basis By, of W for which T, is
diagonalizable. O

LEMMA 19.10. If S,T € L(V,V) are diagonalizable transformations such that ST = TS, then there exists
a basis for V in which both T and S act diagonally.

Proof. Let {A1,...,\t}, {a1,...,ap} be the eigenvalues of, respectively, T and S. Suppose we decompose
V into its T-eigenspaces

Vi={veV |Tv=\v}
Then each subspace V; is preserved by S. For if v; € V;

T(S(v)=8(T (v;)) =8 N\wi) = S (v;) = S(v;) is an eigenvector of T with eigenvalue A; = S (v;) € V;

But then by the preceding lemma, on each of the S-invariant subspace V;, S is diagonalizable. Therefore,
each V; has an S-eigenspace decompositio

Vi=Vii@Vie®---dViy ; Vij ={veVi|Sv=a;v}.

Now we can choose any bases we want for the subspace V; ;, ¢ = 1,...,k, j = 1,...,¢, and adjoin these
bases to get a basis B for V. Each of the basis vectors in B will live in one particular V; ; and so will be
simultaneously an eigenvector for T" and S

veV,;, = T =XNv and S(v)=a;v
Thus, with respect to the basis so constructed, both S and T will act diagonally. ]
THEOREM 19.11. Let V' be a vector space over an algebraically closed field and let T € L (V,V). Then
T=D+N , D,N e L(V,V)

where

i) D € L(V,V) is a diagonalizable linear transformation;

ii) N e L(V,V) is a nilpotent transformation;

ii) There exist polynomials f (z) and g (z) € F[z] such that D = f(T) and N = g(T).
(iv)

v)

The transformations D and N commute: Do N = N o D.
The transformations D and N are uniquely determined in the sense that if T = D’ + N’ with D’
diagonalizable, N' nilpotent and D'’ o N' = N' o D', then D’ = D and N’ = N.

(
t
(

Proof. Since F is algebraically closed, the irreducible polynomials in F [z] are all of the form x — «;, and so
the minimal polynomial has the form

S1 Sk

oz — o)
and we have via Theorem 17.17 a corresponding direct sum decomposition of V'
(4) V=naVhe ol

into T invariant subspaces where

mr (x) = (x — aq)

Vi=EV
where the operators E; are of the form E; = f; (T) for some polynomal f € F [z], and satisfy

(B ifi=j
by = { Orvyyy i

Consider the operator
D=oF1+asEy+ -+ apFy
Note that
D=a1fi(T)+azfa(T)+  +apfi(T)
and so is a polynomial in T as desired. Morever, because it is a polynomial in T it will preserve any
T-invariant subspace. So it makes sense to restrict it to any of the subspaces V;
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Let v € V. Its component v; in V; will be E; (v). But then

D(’UZ) = (OzlEl"'—FOlkEk)OEi (’U) :OélElEi ('U)++041E1Ez (’U)+ +O(kEkEZ‘ (1})
= Oy 440, +aE;(v)+0y +---+0y
= ;0

and so on each of the subspaces V;, D will simply act by scalar multiplication by «a;. Hence D will be
diagonaliable, with eigenvalues «;.

Now let
N=T-D

Since D is a polynomial in 7" so will be N. We have

N?},’ = (T—D)’Uz‘ = (T—Ozi)’Ui
Now recall that Theorem 17.17 tells us also that the subspaces V; in the decomposition (4) are also identi-
fiable as ker ((T — «;)®"). This implies

Nsivi = OV

and if we choose n = max (sy,..., ) then we’ll have

N"; = 0y i=1,2,...,k
and thus, N™ (v) = Oy for all v € V. Thus, N is nilpotent.

Note also, that since both N and D are polynomials in 7" we will have automatically that N o D = D o N.

It remains to prove the uniqueness of N and D. Suppose that N’ and D’ satisfy
T = D'+N
D'N' = N'D
D’ is diagonalizable
N’ is nilpotent
Then we have
TD =(D'+ N)YD' =D'D'+ N'D'=D'D'+ D'N =D (D'+N')=D'T
and similarly TN’ = N'T. But then D'D = DD’ and N'N = NN’ since D and N are polynomial in 7.
From
D+N=T=D+N'
we also have
D-D=N-N’

Now since N and N’ commute, we can use the binomial theorem to expand powers of (N’ — N)

M m nm—k k
- = () vyt
k=0
Now because N’ and N’ are nilpotent there exist integers n and n’ such that (N)" = 0p(y,1) and (N’ =
Or(v,v). Therefore if we choose m larger than say max(n,n’) /2 then all the terms in (N — N')™ will
vanish. Hence, N — N’ is nilpotent. On the other hand, since the matrices D and D’ commute, they are
simultaneoulsy diagonalizable. And so D — D’ can be diagonalized, and in its diagonalizing basis must
take the form
B, - 0

N-N=D-D~| : -
0 - 8,
But then for (N — N/)™ = 0, we will need each 3" = 0, Hence D = D’, and hence N = N'.



