
LECTURE 19

The Cayley-Hamilton Theorem and the Jordan Decomposition

Let me begin by summarizing the main results of the last lecture. Suppose T is a endomorphism of a
vector space V . Then T has a minimal polynomial that factorizes into a product of powers of irreducible
polynomials

(1) mT (x) = p1 (x)
s1 · · · pk (x)

sk

These irreducible factors can then be used to construct certain polynomials f1 (x) , . . . , fk (x) and corre-
sponding operators Ei ≡ fi (T ) which can be used to decompose the vector space V into a direct sum of
T -invariant subspaces

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk
Morever, we have both Vi = Ei (V ) (the image of V under Ei) and Vi = ker (pi (T )

si) (the kernel of the
operator pi (T )

si). Since each Vi is T -invariant

v ∈ Vi ⇒ T (v) ∈ Vi
it follows that if we construct a basis by V by first choosing bases for each subspace Vi and then adjoining
these bases to get a basis B for the entire vector space V , then with respect to B, the matrix T will take
the block diagonal form

ABB =



A1 0 · · · · · · 0
0 A2 0
...

. . .
...

... Ak−1 0
0 0 · · · 0 Ak


What we aim to show in this lecture is that the submatrices Ai (which describe how T operators on the
subspace Vi) can chosen to be upper triangular. A little more precisely, we shall show that we can always
chose a basis for a given Vi so that the corresponding matrix Ai is upper triangular.

In what follows below we shall be making a special assumption about the factorization (1) of the minimal
polynomial; namely

(2) Assumption : Each irreducible factor of mT is of the form pi (x) = x− ξi
where, of course, ξi is some eigenvalue of T . We note that whenever we are working over an algebraically
closed field (like C) this assumption on mT will hold automatically. So we have

(2’) mT (x) = (x− ξ1)
s1 · · · (x− ξk)

sk , with ξi 6= ξj if i 6= j.

Now the first thing to point out is that since the subspaces Vi are also the kernel of the operators (pi (T ))
si =

(T − ξi1)
si , if we defined operators

Ni ≡ T − ξi1
then

(Ni)
si v = 0V ∀ v ∈ Vi = ker ((Ni)

si)

Thus, when we restrict the action of Ni to its corresponding subspace Vi, the sthi power of Ni vanishes
identically. One says that Ni acts nilpotently on Vi.
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1. Digression: Nilpotent Transformations

Definition 19.1. A linear transformation N : W →W of a vector space W is said to be nilpotent if there
exists a positive integer k such that Nk = 0L(W,W ). If N is nilpotent and s is the minimal integer such that
Ns = 0L(W,W ) we say that N is s-nilpotent.

Lemma 19.2. If N is m-nilpotent, then its minimal polynomial is

mN (x) = xm .

Proof. By the definition of m-nilpotent, we certainly have

Nm = 0

and so, by Theorem 16.8, the minimal polynomial of N must divide xm. Since xm is a power of a single
irreducible polynomial (x− 0), the only possibilities for mN (x) are other are polynomials of the form

(x− 0)
k

with k ≤ m. But we still have to had

0L(V,V ) = mN (N) = Nk

but since m is the smallest k such that Nk = 0, we must have

mN (x) = (x− 0)
m

.

�

Lemma 19.3. Let N ∈ L (V, V ) be a nilpotent endomorphism of a finite-dimensional vector space V over
an algebraically closed field. Then W has a basis {w1, w2, . . . , wn} such that

N (v1) = 0V

N (v2) ∈ spanF (v1)

N (v3) ∈ spanF (v1, v2)

...

N (vn) ∈ spanF (v1, v2, . . . , vn−1) .

Proof. Since N is nilpotent, for sufficient large k we must have Nk = 0L(W,W ). Let m be the mininal such
k (so N is m-nilpotent). By the preceding lemma, the minimal polynomial of N is then

mN (x) = xm .

Now consider the following family of subspaces of V

V0 : = {0}
V1 : = ker (N)

V2 : = ker
(
N2
)

...

Vm−1 = ker
(
Nm−1)

Vm = ker (Nm) = V

I claim Vi is a proper subspace of Vi+1 for i = 0, . . . ,m − 1. Indeed, if v ∈ Vi, then N iv = 0 and so also
N i+1v = 0 as well; so certainly Vi ⊆ Vi+1. To see that Vi is, in fact, a proper subspace of Vi+1, we argue
as follows. Since m is the minimal power of N such that Nm = 0L(V,V ) there has to be a vector w that

survives Nm−1;

N iw 6= 0 if i < m but Nmw = 0 .

Set

wi+1 = Nm−i−1w
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Then
N iwi+1 = Nm−1w 6= 0

but
N i+1wi+1 = Nmw = 0 .

So
wi+1 /∈ Vi but wi+1 ∈ Vi+1.

Thus, each Vi is a proper subset of Vi+1.

And so we have the following chain of proper subspaces

{0W } ( V1 ( V2 ( · · · ( Vm−1 ( Vm = V .

Next we note that
N (Vi) ⊂ Vi−1

Indeed, if v ∈ Vi, we have N iv = 0. But then Nv will satisfy N i−1 (Nv) = 0, and so Nv ∈ Vi−1.

Ok. We are now ready to construct a basis B of V that has the property

N (vi) ⊂ span (v1, . . . , vi−1) .

To do this we just apply Theorem 5.4 repeatedly. Let ki = dimVi. Since V1 is a subspace it has a basis

B1 =
{
v
(1)
1 , . . . , v

(1)
k1

}
. Since V1 is a subspace of V2, by Theorem 5.4, V2 has a basis B2 that extends the

basis B1 of V1.

B2 =
{
v
(1)
1 , . . . , v

(1)
k , v

(2)
k1+1, . . . , v

(2)
k2

}
.

Then, in a similar fashion, we can extend B2 to a basis B3 of V3, B3 to a basis B4 of V4, and so on. In the
end, we’ll arrive at a basis

B =
{
v
(1)
1 , . . . , v

(1)
k1
, v

(2)
k1+1, . . . , v

(m)
n

}
of Vm = V .

Now because
NVi ⊂ Vi−1

we will have to have

N
(
v
(i)
j

)
∈ Vi−1 = span

(
v
(1)
1 , . . . , v

(i−1)
ki−1

)
And in fact, by the way we ordered to lower indices on the basis elements v

(i)
j , we have ki−1 < j ≤ ki. Thus,

N
(
v
(i)
j

)
∈ span

(
v
(1)
1 , . . . , v

(i−1)
ki−1

)
⊆ span

(
v
(1)
1 , . . . , v

(i−1)
ki−1

, v
(i)
ki−1+1, . . . , v

(i)
j−1

)
which, is the statement we sought to prove (by simply ignoring the upper indices, which after all are just a
notational device to indicate how we constructed the basis B). �

Remark 19.4. Another way of framing this result is as follows. If N is a nilpotent operator acting a
finite-dimensional vector space W , then there exists a basis B for W such the matrix of N with respect to
B is an upper triangular matrix with 0’s along the diagonal:

NBB =


0 ∗ · · · ∗
0 0 ∗
...

. . .
...

0 0 · · · 0

 .

To see this, consider the jth column vector cj of NBB .

cj = N (vj)B .

Since N (vj) ∈ span (v1, . . . , vj−1), the coordinates of N (vj) with respect to vj , vj+1, . . . , vn must all be 0.
So we have

(NBB)ij = (cj)i = 0 if i ≥ j .
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So if we say that n× n matrix A is strictly upper triagular whenever its entries satisfy

Aij = 0 whenever j ≤ i
then the preceding theorem can be rephrased more succinctly as saying:

• IfN ∈ L (V, V ) is a nilpotent transfomation, there exists a basis for V such that matrix representing
N is strictly upper triangular.

Remark 19.5. Another observation on can make is that if N ∈ L (W,W ) is nilpotent and s is the minimal
integer such that Ns = 0L(W,W ). Then W has to be at least s dimensional (because each application of N
confines a vector to a smaller and smaller subspace of W . Cf. equation (3)).

Theorem 19.6. Let T ∈ L (V, V ) and suppose T has a minimal polynomial of the form

mT (x) = (x− α1)
s1 · · · (s− αk)

sk .

Then there exists a basis {v1, . . . , vn} of V such that the matrix AT of T with respect to this basis has a
block diagonal form

AT =



A1 0 · · · · · · 0
0 A2 0
...

. . .
...

... Ak−1 0
0 0 · · · 0 Ak


and, moreover, submatrix Ai along the diagonal is of the form

Ai =


αi ∗ · · · ∗
0 αi ∗
...

. . .
...

0 0 · · · αi


with only zero entries appearing below the diagonal. Moreover, the sizes of these submatrices Ai is ≥ si.

Proof. We have already remarked at the beginning of this lecture how (via Theorem 17.17) how the minimal
polynomial mT of T leads to a direct sum decomposition of V into T -invariants subspaces

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk
each subspace corresponding to a particular irreducible factor occuring in the minimal polynomial. In fact,
any basis of V constructed by adjoining bases of the direct summands V1, . . . , Vk will cast A in this block
diagonal form. What we need to show is that we can adopt bases Bi of the individual subspace Vi so that
when T is restriced to Vi its matrix (with respect to the basis Bi of Vi) is upper triagular.

Now recall the subspaces Vi can be identified with the kernel of the operator (pi (T ))
si = (T − αi1)

si . This
means the operator (T − αi1) is a nilpotent operator on Vi. By the preceding lemma then, there exists a
basis for Vi such that T − αi1 is upper triagular with zeros along the diagonal. Thus

(T− αiI)BB =


0 ∗ · · · ∗
0 0 ∗
...

. . .
...

0 0 · · · 0


and so

TBB =


0 ∗ · · · ∗
0 0 ∗
...

. . .
...

0 0 · · · 0

+


αi 0 · · · 0
0 αi 0
...

. . .
...

0 0 · · · αi

 =


αi ∗ · · · ∗
0 αi ∗
...

. . .
...

0 0 · · · αi


Finally, we point out that since (T − αi1) is si-nilpotent on Vi, the dimension of Vi has to be at least si.

�
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Corollary 19.7. Let V be a vector space over an algebraically closed field and let T ∈ L (V, V ). Then the
minimal polynomial of T divides the characteristic polynomial of T .

Proof. Let

(4) mT (x) = (x− α1)
s1 · · · (x− αk)

sk

be the minimal polynomial of T (guaranteed to be of this form since the underlying field is algebraically
closed). By the preceding theorem we can find a basis B for V such that the matrix for T with respect to
B takes an upper triangular form, with entries α1, . . . αk along the diagonal. Then (TBB − x1) will also be
upper triangular, but with entries αi − x along the diagonal. Since the determinant of an upper triangular
matrix is just the product of diagonal elements, we will have

pT (x) = det (TBB − x1) = (α1 − x)
d1 · · ·w (αk − x)

dk

where di is the size of the submatrix Ai (di = dimVi). As remarked at the end of the proof of Theorem
18.5, we have di ≥ si. Thus, minimal polynomial will divide the characteristic polynomial. �

Corollary 19.8 (Cayley-Hamilton). If T ∈ L (V, V ), and pT (x) is its characteristic polynomial, then
pT (T ) = 0L(V,V ).

Proof. By preceding corollary,

pT (x) = q (x)mt (x)

for some polynomial q (x). But then

pT (\T ) = q (T )mT (T ) = q (T )0L(V,V ) = 0L(V,V ) .

�

2. The Jordan Decomposition

Let V be a vector space over an algebraically closed field. We have seen that the minimal polynomial mT

of a linear transformation T ∈ L (V, V ) provides us a natural direct sum decomposition of a vector space V

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk
such that T acts invariantly and, in fact, upper-triagularly on each subspace Vi. We’ll now see that T itself
decomposes in a particular nice, predictable way.

Lemma 19.9. If T ∈ L (V, V ) is diagonalizable. Then its restriction to any T -invariant subspace W of T is
diagonalizable.

Proof. If T is diagonalizable, then its minimal polynomial is of the form

(4) mT (x) = (x− α1) · · · (x− αk) , αi 6= αj if i 6= j ,

where α1, . . . , αk are the eigenvalues of T . Suppose W is a T -invariant subspace of V . Then any power of
T , or indeed, any polynomial in T will preserve W . Because of this,

f (T |W ) = f (T )|W = f (T |)W
that is to say the restriction of any polynomial in T to W makes sense and, in fact, it amounts to the same
polynomial f “evaluated” at the restriction T |W of T to W . In particular, we’ll have

0L(V,V ) = mT (T ) ⇒ 0L(W,W ) = mT (T |W ) .

Now it should be pointed out that this does not imply that mT is also the minimal polynomial of T |W ,
indeed, it might not be (e.g. if W were comprised of a single eigenspace then mT |W = (x− αi)) , it does

imply that the minimal polynomial of T |W must divide mT . Because of the factorization (4) of mT , it
must then be that the minimal polynomial of T |W contain the same kind of factors. In other words, the
minimal polynomial of T |W will also have the form (4), except with possibly some factors missing. But
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then having a minimal polynomial of the form (4) means, there exists a basis BW of W for which T |W is
diagonalizable. �

Lemma 19.10. If S, T ∈ L (V, V ) are diagonalizable transformations such that ST = TS, then there exists
a basis for V in which both T and S act diagonally.

Proof. Let {λ1, . . . , λk}, {α1, . . . , α`} be the eigenvalues of, respectively, T and S. Suppose we decompose
V into its T -eigenspaces

Vi = {v ∈ V | Tv = λiv}
Then each subspace Vi is preserved by S. For if vi ∈ Vi
T (S (vi)) = S (T (vi)) = S (λivi) = λiS (vi) ⇒ S (vi) is an eigenvector of T with eigenvalue λi ⇒ S (vi) ∈ Vi
But then by the preceding lemma, on each of the S-invariant subspace Vi, S is diagonalizable. Therefore,
each Vi has an S-eigenspace decompositio

Vi = Vi,1 ⊕ Vi,2 ⊕ · · · ⊕ Vi,` ; Vi,j = {v ∈ Vi | Sv = αjv} .
Now we can choose any bases we want for the subspace Vi,j , i = 1, . . . , k, j = 1, . . . , `, and adjoin these
bases to get a basis B for V . Each of the basis vectors in B will live in one particular Vi,j and so will be
simultaneously an eigenvector for T and S:

v ∈ Vi,j ⇒ T (v) = λiv and S (v) = αjv .

Thus, with respect to the basis so constructed, both S and T will act diagonally. �

Theorem 19.11. Let V be a vector space over an algebraically closed field and let T ∈ L (V, V ). Then

T = D +N , D,N ∈ L (V, V )

where

(i) D ∈ L (V, V ) is a diagonalizable linear transformation;
(ii) N ∈ L (V, V ) is a nilpotent transformation;

(iii) There exist polynomials f (x) and g (x) ∈ F [x] such that D = f (T ) and N = g (T ) .
(iv) The transformations D and N commute: D ◦N = N ◦D.
(v) The transformations D and N are uniquely determined in the sense that if T = D′ +N ′ with D′

diagonalizable, N ′ nilpotent and D′ ◦N ′ = N ′ ◦D′, then D′ = D and N ′ = N .

Proof. Since F is algebraically closed, the irreducible polynomials in F [x] are all of the form x− αi, and so
the minimal polynomial has the form

mT (x) = (x− α1)
s1 · · · (x− αk)

sk

and we have via Theorem 17.17 a corresponding direct sum decomposition of V

(4) V = V1 ⊕ V2 ⊕ · · · ⊕ Vk
into T invariant subspaces where

Vi = EiV

where the operators Ei are of the form Ei = fi (T ) for some polynomal f ∈ F [x], and satisfy

EiEj =

{
Ei if i = j
0L(V,V ) if i 6= j

Consider the operator
D = α1E1 + α2E2 + · · ·+ αkEk

Note that
D = α1f1 (T ) + α2f2 (T ) + · · ·+ αkfk (T )

and so is a polynomial in T as desired. Morever, because it is a polynomial in T it will preserve any
T -invariant subspace. So it makes sense to restrict it to any of the subspaces Vi
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Let v ∈ V . Its component vi in Vi will be Ei (v). But then

D (vi) = (α1E1 · · ·+ αkEk) ◦ Ei (v) = α1E1Ei (v) + · · ·+ αiEiEi (v) + · · ·+ αkEkEi (v)

= 0V + · · ·+ 0v + αiEi (v) + 0V + · · ·+ 0V

= αivi

and so on each of the subspaces Vi, D will simply act by scalar multiplication by αi. Hence D will be
diagonaliable, with eigenvalues αi.

Now let
N = T −D .

Since D is a polynomial in T so will be N . We have

Nvi = (T −D) vi = (T − αi) vi

Now recall that Theorem 17.17 tells us also that the subspaces Vi in the decomposition (4) are also identi-
fiable as ker ((T − αi)

si). This implies
Nsivi = 0V

and if we choose n = max (s1, . . . , sk) then we’ll have

Nnvi = 0V i = 1, 2, . . . , k

and thus, Nn (v) = 0V for all v ∈ V . Thus, N is nilpotent.

Note also, that since both N and D are polynomials in T we will have automatically that N ◦D = D ◦N .

It remains to prove the uniqueness of N and D. Suppose that N ′ and D′ satisfy

T = D′ +N ′

D′N ′ = N ′D′

D′ is diagonalizable

N ′ is nilpotent

Then we have

TD′ = (D′ +N ′)D′ = D′D′ +N ′D′ = D′D′ +D′N ′ = D′ (D′ +N ′) = D′T

and similarly TN ′ = N ′T . But then D′D = DD′ and N ′N = NN ′ since D and N are polynomial in T .
From

D +N = T = D′ +N ′

we also have
D′ −D = N −N ′

Now since N and N ′ commute, we can use the binomial theorem to expand powers of (N ′ −N)

(N −N ′)m =

m∑
k=0

(
m
k

)
(N ′)

m−k
(N)

k

Now because N ′ and N ′ are nilpotent there exist integers n and n′ such that (N)
n

= 0L(V,V ) and (N ′)
n′

=

0L(V,V ). Therefore if we choose m larger than say max (n, n′) /2 then all the terms in (N −N ′)m will
vanish. Hence, N − N ′ is nilpotent. On the other hand, since the matrices D and D′ commute, they are
simultaneoulsy diagonalizable. And so D − D′ can be diagonalized, and in its diagonalizing basis must
take the form

N −N ′ = D′ −D ∼

 β1 · · · 0
...

. . .
...

0 · · · βn


But then for (N −N ′)m = 0, we will need each βm

i = 0, Hence D = D′, and hence N = N ′.


