
LECTURE 18

Invariant Subspaces

Recall the range of a linear transformation T : V →W is the set

range (T ) = {w ∈W | w = T (v) for some v ∈ V }
Sometimes we say range (T ) is the image of V by T to communicate the same idea. We can also generalize
this notion by considering the image of a particular subspace U of V . We usually denote the image of a
subspace as follows

T (U) = {w ∈W | w = T (v) for some u ∈ U}
This notion of the image of a subspace is also appplicable when T be a linear tranformation from a vector
space V into itself; and in this situation both U and T (U) are subspaces of V . All this motivates the
following definition.

Definition 18.1. A subspace W of a vector space V is said to be invariant with respect to a linear
transformation T ∈ L (V, V ) if T (W ) ⊆W .

Of course, the parent vector space V is always invariant with respect to a T ∈ L (V, V ) since the range of
T will always be a subspace of V .

Also, if v is an eigenvector of T with eigenvalue λ, then its span will be an invariant subspace of T since

v′ ∈ span (v) v′ = αv ⇒ T (v′) = T (αv) = αT (v) = (αλ) v ∈ span (v)

In fact,

Proposition 18.2. Let Vλ be the λ-eigenspace of T ∈ L (V, V );

Vλ = {v ∈ V | T (v) = λv}
Then any subspace of Vλ is an invariant subspace of T .

Proof. Let W be a subspace of Vλ. Each vector w ∈W ⊆ Vλ will satisfy

T (w) = λw ∈W since W is closed under scalar multiplication.

Therefore T (W ) ⊆W . �

As a particular example of the preceding proposition, consider the 0-eigenspace of a T ∈ L (V, V ):

V0 = {v ∈ V | T (v) = 0F · v = 0V } = ker (T )

So any subspace of the kernel of a linear transformation T ∈ L (V, V ) will be an invariant subspace.1

Definition 18.3. Let V1, . . . , Vk be subspaces of V . The space V is said to be the direct sum of V1, . . . , Vk
if

1Actually, we have a slight inconsistency if V0 = {0V }. For if we allow 0V to be interpretable as an eigenvector, it is then
an eigenvector for all possible eigenvalues

T (0V ) = 0V = λ · 0V ∀ λ ∈ F
So we normally don’t regard the zero vector as an eigenvector; nor V0 as an eigenspace when V0 = {0V }.
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18. INVARIANT SUBSPACES 2

(a) Every vector v ∈ V can be expressed as

(1) v = v1 + v2 + · · ·+ vk with vi ∈ Vi for each i ∈ {1, . . . , k} .

(b) The expansion of a vector v in the form (1) is unique.

We write
V = V1 ⊕ V2 ⊕ · · · ⊕ Vk

or

V =

k⊕
i=1

Vi

when V is a direct sum of V1, V2, . . . , Vk.

Example 18.4. Let B = {w1, . . . , wn} be a basis for V and set

Vi = span (wi) , i = 1, 2, . . . , n .

Then
V =

⊕
Vi

Lemma 18.5. Let V1, . . . , Vk be subspaces of V . Then V =
⊕k

i=1 Vi if and only if

(i) Every vector in v can be expressed at least one way as v = v1 + · · ·+ vk with vi ∈ Vi, i = 1, . . . , k.
(ii) If vi ∈ Vi for i = 1, . . . , k and

v1 + v2 + · · ·+ vk = 0V ⇒ v1 = 0V , v2 = 0V , . . . , vk = 0V .

Proof.

⇒ Suppose V =
⊕k

i=1 Vi. Statement (i) of the lemma is the same as property (a) of the definition of the
direct sum. We need to deduce property (ii) of the Lemma. Since each Vi is a subspace of V each Vi
contains 0V . If we set vi = 0V for each i ∈ {1, . . . , k} we can then write

V 3 0V = 0V + 0V + · · ·+ 0V = v1 + v2 + · · ·+ vk

Applying the uniqueness property (b) of Definition 17.3 we can infer that the only way to get a sum like
v1 + · · ·+ vk to produce the 0 vector is to take v1 = 0V , . . . , vk = 0V . Thus, statement (ii) of the Lemma
follows.

⇒ Suppose statements (i) and (ii) of the Lemma hold. Since statement (i) of the lemma is the same as
statement (b) of the definition of direct sum, we just have to show that statement (b) of the Definition
holds. Suppose

v = v1 + · · ·+ vk

v = w1 + · · ·+ wk

are two expansions of v of the form (1). Then subtracting the two equations we get

(*) 0V = (v1 − w1) + · · ·+ (vk − wk)

Since the Vi are subspaces, vi, wi ∈ Vi implies vi − wi ∈ Vi and so (*) is an expression in the form (1).
Statement (ii) says that for such an equation to be valid we must have each term vi − wi = 0V . Thus,
vi = wi for i = 1, . . . , k and property (b) of the definition follows.

�

Lemma 18.6. Let V be a vector space over F, and suppose there exists non-zero linear transformations
E1, . . . , Ek in L (V, V ) such that

(a) 1 = E1 + E2 + · · ·+ Ek
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(b) EiEj = EjEi = 0 if i 6= j, 1 ≤ i, j ≤ k

Then

(i) E2
i = Ei for i = 1, . . . , k

(ii) V is the direct sum

V =

k⊕
i=1

Ei (V )

and each Ei (V ) is non-zero.

Proof.

(i) We have

Ei = Ei · 1 = Ei · (E1 + · · ·+ Ei + · · ·+ Ek) (using part (a) of hypotheis)

= E2
i +

∑
i 6=j

EiEj

= E2
i +

∑
i 6=j

0 (using part (b) of hypothesis)

= E2
i

(ii) Since each Ei is a non-zero linear transformation each Ei (V ) is a non-zero subspace of V . Let v ∈ V .

v = 1 · v = (E1 + · · ·+ Ek) (v)

= E1 (v) + · · ·+ Ek (v)

Thus, each element of V can be expressed sum w1 + · · · + wk with each vi ∈ Ei (V ). Now suppose
v1 ∈ E1 (V ) , . . . , vk ∈ Ek (V ) and

0V = v1 + · · ·+ vk

Then, for each i = 1, . . . , k we have

0V = Ei (0V ) = Ei (v1) + · · ·+ Eivi + · · ·+ Eivk

Now if vj ∈ Ej (V ) ⇒ vj = Ej (wj) for some wj ∈ V . So we have

0V = Ei (0V ) = EiE1 (w1) + · · ·+ EiEi (wi) + · · ·+ EiEk (wk)

Since EiEj = 0 if i 6= j, the only possibly non-zero term on the right hand side is EiEi (wi) = Ei (wi) = vi.
So we must have

0V = vi

This argument holds for each i = 1, . . . , k. Hence,

0V = v1 + · · ·+ vk ⇒ v1 = 0V , v2 = 0V , . . . , vk = 0V

and so

V =

k⊕
i=1

Ei (V )

by Lemma 17.5. �

1. Digression: More on Polynomials

Before we procede further, it will might be helpful to review a bit of polynomial algebra. We gave a suitably
abstract definition of polynomials over a field back in Lecture 16, recall that the ring F [x] of polynomials
with coefficients in a field F is not only a vector space over F but an integral ring (a commutative ring with
identity without zero divisors). In this commutative ring setting we have



1. DIGRESSION: MORE ON POLYNOMIALS 4

Theorem 18.7 (Division Algorithm for F [x]). Let f, g be polynomials in F [x], not both 0F. Then there
exists unique polynomials q, r ∈ F [x] such that

(i) f = qg + r
(ii) Either r = 0F or deg (r) < deg (g).

We write

f | g (”f divides g”)

whenever there is a polynomial q such that g = qf .

Definition 18.8. Two polynomials f, g ∈ F [x] are called associate if g = cf for some c ∈ F.

Definition 18.9. Let f, g ∈ F [x] not both zero. The greatest common divisor of f and g is the (unique)
monic polynomial of highest degree that divides both f and g.

Theorem 18.10. Let f, g ∈ F [x]. Then there exist polynomials u, v ∈ F [x] such that

GCD (f, g) = uf + vg

Corollary 18.11. If f1, f2, . . . , fk ∈ F [x] have no common factors then there exist polynomials u1, u2, . . . , uk ∈
F [x] such that

1F = u1f1 + u2f2 + · · ·+ ukfk

Recall that an integer p ∈ Z is prime if its only divisors are ±1 and ±p. The analogous concept for
polynomials is that of an irreducible polynomial.

Definition 18.12. A non-constant polynomial p is irreducible if its only divisors are the constants and
its associates:

if p is irreducible, q | p ⇒ q ∈ F or q = cp for some c ∈ F

Theorem 18.13. Every non-constant polynomial is factorizable as a product of irreducible polynomials.
This factorization is unique up to reordering of factors and replacing factors by their associates.

Definition 18.14. Let R be an F-algebra (a vector space over F with its own internal multiplication). Then

for each f ∈ F [x] we have a function f̃ : R→ R defined by

r 7−→ f̃ (r) = a0 + a1 · r + a2 · r2 + · · ·+ an · rn ∈ R

when

f (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n .

Definition 18.15. A root of a polynomial in R is an element r ∈ R such that

f̃ (r) = 0R

Theorem 18.16. Suppose a ∈ R is a root of f ∈ F [x], then x− a is a factor of f .

Proof. By the Division Algorithm there exist unique polynomials q and r such that

f = q (x− a) + r

Evaluating both sides at x = a, we see

f̃ (a) = 0 + r̃ (a)

So

a is a root of ⇐⇒ f̃ (a) = 0 ⇐⇒ r̃ (a) = 0 ⇐⇒ r = 0F ⇐⇒ (x− a) | f

�
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As remarked in Lecture 16, the point of using indeterminates in the definition of a polynomial is so that we
have some choice in how we evaluate a polynomial function; and the the basics of polynomial arithmetic
(like Theorems 17.7, 17.10, 17.11, 17.13, and 17.16 above) still remain in force. Note, however, whether
or not there are roots of a polynomial f in a given ring R is as much a property of the ring R as it is of the
polynomial f . Consider for example,

f = x2 + 1

It’s well known that f has no roots in R, but it does have the roots ±i ∈ C. It also has roots(
0 ±1
∓1 0

)
∈M2 (R)

On the other hand, since it always makes sense to evaluate a polynomial f ∈ F [x] at an element a ∈ F, the
question as to whether f ∈ F [x] has a root in F is a property of F alone. When it is always possible to find
a root of a polynomial f ∈ F [x] in the underlying field f we say that F is algebraically closed.

2. Back to Linear Transformations

Theorem 18.17. Let T ∈ L (V, V ) and let

mT (x) = p1 (x)
s1 · · · pk (x)

sk

be a factorization of the minimal polynomial of T in terms of distinct irreducible elements of F [x]. Then
there exist polynomials {f1, . . . , fk} in F [x] such that the linear transformations Ei defined by

Ei = fi (T ) , i = 1, . . . , k

satisfy

(i) 1 = E1 + E2 + · · ·+ Ek
(ii) EiEj = EjEi = 0 if i 6= j

(iii) Ei 6= 0
(iv) Each EiV is a T -invariant subspace of V and we have the following direct sum decomposition of

V

V = E1 (V )⊕ E2 (V )⊕ · · · ⊕ Ek (V )

(v) Ei (V ) = ker (psii ) for i = 1, . . . , k .

Proof.

(i) Let

qi (x) =
mT (x)

pi (x)
si = p1 (x)

s1 · · · pi−1 (x)
si−1 pi+1 (x)

si+1 · · · pk (x)
sk

Then the polynomials qi (x) have no common factors2, then by Corollary 17.11 above, there exist polynomials
a1 . . . , ak ∈ F [x] such that

1F = a1q1 + · · ·+ akqk .

Substituting T into both sides of this last equation we have

1 = a1 (T ) q1 (T ) + · · ·+ ak (T ) qk (T ) .

So if we set

fi (x) = ai (x) qi (x)

and

Ei = fi (T )

2Although pairs of these polynomials will have multiple common factors of the form (pk (x)sk ), there will be no such

factor common to all of the qi (x). The latter circumstance is what allows us to apply Corollary 11.7,
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we have
1 = E1 + · · ·+ Ek .

(ii) Next we note whenever i 6= j, mT divides fifj ; for when we construct fi we retain all the factors (pk)
sk

except (pi)
si and similarly for fj when we construct it. So in the product fifj all the factor (pk)

sk occur at
least once (every factor except (pi)

si and (pj)
sj appear at least twice). Thus,

mT | fifj ⇒ fi (T ) fj (T ) = 0 ⇒ EiEj = 0

(iii) In order to apply Lemma 17.6 in order to conclude

V = E1 (V )⊕ E2 (V )⊕ · · · ⊕ Ek (V )

let us now show that each of the linear transformations Ei are non-zero. Suppose Ei (V ) = 0 for some i.
Then

V = 1V (V ) = (E1 + · · ·Ei−1 + 0 + Ei+1 + · · ·+ Ek) (V )

=

∑
i 6=j

Ei

 (V )

But then

qi (T ) (V ) =
∑
i6=j

qi (T )Ej (V )

=
∑
i6=j

(
ps11 (T ) · · · p̂sii (T ) · · · pskk (T )

)(
aj (T ) ps11 (T ) · · · p̂sjj (T ) · · · pskk (T )

)
=

∑
i6=j

mT (T )
(
aj (T ) ps11 (T ) · · · p̂sii (T ) · · · p̂sjj (T ) · · ·j pskk (T )

)
= 0

since mT (T ) = 0. On the other hand,

qi =
mT

prii
⇒ deg (qi) < deg (mT )

contradicting the hypothesis that mT is the minimal polynomial for T . Thus, we cannot have Ei (V ) = 0.

(iv) Since the operator Ei have now been shown to satisfy the hypothesis on the operators in Lemma 17.6,
we can conclude

V = E1 (V )⊕ E2 (V )⊕ · · · ⊕ Ek (V ) .

To see that the subspaces Ei (V ) are T -invariant, we simply observe

TEi (V ) = Tfi (T ) (V ) = fi (T )T (V ) = EiT (V ) ⊆ range (Ei) = Ei (V )

It remains to show that

(v) ker (pi (T )
si) = Ei (V )

Now

(pi (T ))
si Ei = (pi (T ))

si
(
ai (T ) (p1 (T ))

s1 · · · ̂(pi (T ))
si · · · (pk (T ))

sk
)

= ai (T )mT (T )

= 0

This shows that the range of Ei lives in in the kernel of (pi (T ))
si ; which is to say

(*) Ei (V ) ⊆ ker (pi (T )
si) , i = 1, . . . , k

If we can show the opposite inclusion
ker (pi (T )

si) ⊆ Ei (V )

then (v) will follow.
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Let v ∈ ker (pi (T )
si) and decompose it with respect to the direct sum composition (4) of v :

v = E1v + E2v + · · ·+ Eiv + · · ·+ Ekv

Note if we can show that

(**) v ∈ ker (pi (T )
si) ⇒ Ejv = 0 ∀ j 6= i

then our conclusion will follows; because in this situation

ker (pi (T )
si) 3 v ⇒ v = 0 + · · ·+ 0 + Eivi + 0 + · · ·+ 0

⇒ v = Eiv

⇒ v ∈ Ei (V )

To prove (**), we first note that since pi and pj are distinct irreducible polynomials when i 6= j, (pi)
si and

(pj)
sj have no common factors and so there are polynomials bi, bj ∈ F [x] such that

1F[x] = GCD
(
psii , p

sj
j

)
= bi (pi)

si + bj (pj)
si .

Now let v ∈ ker (pi (T )
si) and consider

Ejv = 1 · Ejv = (bi (T ) pi (T )
si + bj (T ) pj (T )

sj )Ejv , i 6= j

We have, on the one hand,

bi (T ) pi (T )
si Ejv = bi (T )Ejpi (T )

si v = 0 since v ∈ ker (pi (T )
si)

and, on the other hand, since as we showed in (*), Ej (V ) ⊆ ker (pj (T )
sj ),

bj (T ) pj (T )
sj Ejv = 0

Thus

Ejv = = bi (T ) pi (T )
si Ej (v) + bj (T ) pj (T )

sj Ejv

= 0 + 0

= 0

Thus,

v = E1v + E2v + · · ·+ Eiv + · · ·+ Ekv

= 0 + · · ·+ 0 + Eiv + 0 + · · ·+ 0

= Eiv

So any v ∈ ker (pi (T )
si) lies in Ei (V ), thus (**) holds.

�

3. Diagonalization

Definition 18.18. A linear transformation T : V → V is diagonalizable if there exists a basis B of V
consisting of eigenvectors of T . (Equivalently, T is diagonalizable if the number of linearly independent
eigenvectors equals the dimension of V .)

Theorem 18.19. A linear transformation T : V → V is diagonalizable if and only if the minimal polynomial
mT (x) of T has the form

m (x) = (x− ξ1) (x− ξ2) · · · (x− ξk)

with the ξi being the distinct roots of m (x) in F.

Proof.

⇒ Suppose T is diagonalizable, and let {v1, . . . , vn} be a basis for V which we can take to be a basis of
T -eigenvectors:

T (vi) = λivi with λi ∈ {ξ1, . . . , ξk}
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Since each λi must be chosen from the set {ξ1, . . . , ξk}, each of the vectors vi must be annihilated by one
of the operators

Sj = T − ξj1
for

(6) Sj (vi) = T (vi)− ξjvi =
(
λi − ξj

)
vi = 0V when λi = ξj .

So all of the vi are annihilated by the product of the Sj

(S1S2 · · ·Sk) vi = 0V ∀ i

(note that we are using both (6) and the easy observation that the operators Si all commute with one
another). Hence, if we expand an arbitrary vector v with respect to the basis {v1, . . . , vn} we’ll have

(S1 · · ·Sk) (v) = (S1 · · ·Sk) (a1v1 + · · ·+ anvn)

= a1 (S1 · · ·Sk) (v1) + · · ·+ an (S1 · · ·Sk) (vn)

= a1 · 0V + · · ·+ an0V

= 0V

Since v is arbitrary, we must have

S1 · · ·Sk = 0L(V,V ) .

Note

S1 · · ·Sk = m (T )

where m (x) is a polynomial in the form specified in the statement of the Lemma.

We’ll now show that m (x) is indeed the minimal polynomial of T . By Theorem 16.8 and Definition 16.9, the
minimal polynomial mT (x) of T must be a factor of any other polynomial f (x) such that f (T ) = 0L(V,V ).
In particular, mT (x) must divide m (x) = (x− ξ1) · · · (x− ξk). Since we are already displaying m (x) in
terms of its complete factorization, it’s clear that mT (x) if it is to be a factor of m (x) must be factorizable
in a similar way, except that some of factors (x− ξk) that appear in m (x) might not appear in mT (x).
However, if one removes any factor (x− ξi) from m (x), one ends up with an operator

S1 · · ·Si−1Si+1 · · ·Sk

that does not vanish on the ξi-eigenspace of T . Thus, the minimal polynomial of T actually coincides with
the polynomial m (x).

⇐= If the minimal polnomial of T takes the specied form

mT (x) = (x− ξ1) · · · (x− ξk)

then by Theorem 17.17, the above factorization of mT (x) leads to operators Ei such that

(7) V = E1 (V )⊕ E2 (V )⊕ · · · ⊕ Ek (V )

with

(8) Ei (V ) = ker (T − ξi1)

It’s pretty clear that (7) and (8) say that V has a direct sum decomposition into eigenspaces of T (as each

ker (T − ξi1) is exactly the ξi-eigenspace of T ). If we chose a basis
{
v
(i)
1 , . . . , v

(i)
`

}
for each subspace Ei (V ),

it is clear that (1) each basis vector is an eigenvector of T , (2) that the basis vectors for different subspaces
Ei (V ) and Ej (V ) are linearly independent, and (3) that the union of the bases of the individual Ei (V )
will span V . Thus, we can form a basis for V consisting of T -eigenvectors Hence, V is diagonalizable.

�
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3.1. An Algorithm for Diagonalizing Matrices. Unfortunately, the diagonalizability criterion
given in Theorem 17.19 is really only readily applicable in the situation where the characteristic polynomial

pT (x) = det (T − x1)

has n = dimV distinct roots. If there are factors like (x− ξi)
m

in the characteristic polynomial, it may
or may not happen that the transformation T is diagonalizable; because the minimal polynomial might

not or might also have factor of the form (x− ξi)
k

(or even a factor that is a irreducible polynomial of
degree ≥ 2). The basic problem is the fact that we don’t yet have a general algorithm that provides us the
minimal polynomial mT (x) for a given linear transformation ; in fact, about all we know about mT (x) is
that it has to divide the characteristic polynomial pT (x).

To make up for this deficiency in Theorem 17.19, I’ll now describe a general algorithm for diagonalizing a
matrix.

Let pT (x) be the characteristic polynomial of a linear transformation T : V → V . In what follows, we shall
suppose that pT (x) has a complete factorization in the form

pT (x) = (x− ξ1)
m1 (x− ξ2)

m2 · · · (x− ξk)
mk

with

(9) m1 +m2 + · · ·+mk = n ≡ dimV .

(Such a factorization of pT (x) will always be possible when we are working over C or any other algebraically
closed field.). Recall that each of the ξi will be an eigenvalue of T and that the exponents mi of (x− ξi) in
the characteristic polynomial is referred to as the algebraic multiplicity mA (ξi) of the eigenvalue ξi.

The geometric multiplicity mG (ξi) of an eigenvalue ξi, on the other hand, is defined as

mG (ξi) = dim ker (T − ξi1) = dimension of the ξi-eigenspace

We always have,

1 ≤ mG (ξi) ≤ mA (ξi) .

If the upper bound mG (ξi) = mA (ξi) holds for all the eigenvalues ξi, then, by (9) we will have as many
linearly independent eigenvectors as the dimension n of V ; and so V will be diagonalizable. In other words,
(10)
dimension of ker (T − ξi1) = # of factors of (x− ξi) in pT (x) for each i = 1, . . . , k ⇒ T is diagonalizable

So how does one construct the corresponding basis of eigenvectors? Well, this will just be a matter of
determining all the eigenvectors of T , as we did in §16.3.3. More explicitly, we carry the following steps
(working with a matrix representation of T ).

(1) Factorize pT (x) to identify all the eigenvalues {ξ1, . . . , ξk} of T .
(2) For each ξi ∈ {ξ1, . . . , ξk} solve the homogeneous linear system

(T − ξi1)x = 0

and express the solution in terms of a basis
{
v
(i)
1 , . . . , v

(i)
mG(ξi)

}
for the solution space. Note that

each of these basis vector will be an eigenvector of T with eigenvalue ξi, and the total number
of eigenvectors found this way will be (by definition) the geometric multiplicity of ξi. Now if
the number mG (ξi) 6= mA (ξi) you may as well stop, because you will not have enough linearly
independent eigenvectors for form a basis for V .

(3) On the other hand, if mG (ξi) always equals mA (ξi), then you will have found enough linearly
independent eigenvectors to construct a basis of V . Moreover, you can also construct a change-
of-basis matrix C that maps you from your original basis to a basis of eigenvectors. This matrix is
formed by using the eigenvectors just found as its columns. Suppose for example that you found
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n linearly independent eigenvectors v1, . . . , vn and λ1, . . . λn are there corresponding eigenvalues.
Then the matrix

C =


| | | |
| | | |
v1 v2 · · · vn−1 vn
| | | |
| | | |


will convert the ith standard basis vector for Rn to the ith eigenvector for T , and so allow one to
carry out a change of coordinates from the standard basis to a basis of eigenvectors.

Example 18.20. Find the matrix C that diagonalizes the matrix A =

 −1 0 1
3 0 −3
1 0 −1

, characteristic

polynomial: X3 + 2X2

• I’ll just run the highlights of the method described above.

det (A− λI) = det

 −1− λ 0 1
3 −λ −3
1 0 −1− λ

 = 0− λ det

(
1− λ 1

1 1− λ

)
= −λ2 (λ+ 2)

So we have two eigenvalues λ = 0,−2. The corresponding eigenvectors are

λ = 0 ⇒ NullSp (A− (0) I) = span

 0
1
0

 ,
 1

0
1


λ = 1 ⇒ NullSp (A− (1) I) = span

 −1
3
1


Thus, we three linearly independent eigenvectors

v1 =

 0
1
0

 with eigenvalue 0

v2 =

 1
0
1

 with eigenvalue 0

v3 =

 −1
3
1

 with eigenvalue 1

The diagonalization matrix C should thus be

C =

 0 1 −1
1 0 3
0 1 1


,Computing the inverse of C, one finds

C−1 =

 3
2 1 − 3

2
1
2 0 1

2
− 1

2 0 1
2


Then, one can verify, via matrix multiplication, that

C−1AC =

 3
2 1 − 3

2
1
2 0 1

2
− 1

2 0 1
2

 −1 0 1
3 0 −3
1 0 −1

 0 1 −1
1 0 3
0 1 1

 =

 0 0 0
0 0 0
0 0 −2


�
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Example 18.21. An application. Solving systems of linear first order ordinary differential equations.

Suppose you are given the followinng system of ODEs

dx1
dt

= 2x1 − 3x2 + 7x3

dx2
dt

= 5x2 + x3

dx3
dt

= −x3

How would you solve it?

• Let’s write the system of ODEs in matrix form

d

dt

 x1
x2
x3

 =

 2 −3 7
0 5 1
0 0 −1

 x1
x2
x3


or, more compactly,

d

dt
x = Ax .

Now if the coefficient matrix had been diagonal this system would have been easy to solve

(11)
d

dt

 x1
x2
x3

 =

 λ1 0 0
0 λ2 0
0 0 λ3

 x1
x2
x3

 ⇒
dx1

dt = λ1x1 ⇒ x1 (t) = c1e
λ1t

dx2

dt = λ2x2 ⇒ x2 (t) = c2e
λ2t

dx3

dt = λ3x3 ⇒ x3 (t) = c3e
λ3t

On the other hand, if the coefficient matrix A is diagonalizable, then we’ll be able to construct a
matrix C from the eigenvectors of A, so that

C−1AC =

 λ1 0 0
0 λ2 0
0 0 λ3

 ≡ D

where λ1, λ2, λ3 are the eigenvalues of A.
Now consider the vector function

(12) y (t) = C−1x (t)

It will satisfy

d

dt
y =

d

dt

(
C−1x

)
= C−1

(
d

dt
x

)
= C−1Ax = C−1ACC−1x =

(
C−1AC

) (
C−1x

)
= Dy

Since, D is a diagonal matrix, the vector function y has an easy solution as determined by (11).

y (t) =

 c1e
λ1t

c2e
λ2t

c3e
λ3t


But then we can recover the original vector function x (t) from this y (t) by multiplying both sides
of (12) by C

x (t) = Cy (t) = C

 c1e
λ1t

c2e
λ2t

c3e
λ3t


So the general solution of a system of ODEs of the form

dx

dt
= Ax

where A is a constant coefficient matrix is readily solvable once you know the eigenvectors of A
(these give you the columns of C) and the eigenvalues of A (the give you the exponential functions
eλit)


