
LECTURE 17

The Theory of a Single Endomorphism

Recall that an endomorphism is a map T : V −→ V is a linear transformation between a vector space V
and itself.

Let L(V, V ) denote the set of endomorphisms of a finite dimensional vector space V . This set has the
natural structure of a vector space with addition and scalar multiplication being defined as usual for a set
of functions between two vectors spaces:

T, T ′ ∈ L (V, V ) ⇒ T + T ′ ∈ L (V, V ) is defined by (T + T ′) (v) = T (v) + T ′ (v)

λ ∈ F , T ′ ∈ L (V, V ) ⇒ λT ∈ L (V, V ) is defined by (λT ) (v) = λT (v) .

Recall that once we choose a basis B = {v1, . . . ,vn} for V , every such linear transformation can be
represented as an n× n matrix

TB,B = ([T (v1)B , · · · , T (vn)B ])
(that is, is to say we form an n×n matrices by using the coordinate vector T (vi) with respect to the basis
B as the ith column). In fact, once we fix a basis we have via this correspondence an isomorphism between
L (V, V ) and Mn×n (F) ∼= Fn

2

. This argument shows that L (V, V ) is n2-dimensional if V is n-dimensional.

Now let fix our attention on a single endomorphism T : V → V . The composition T 2 = T ◦ T of T with
itself is another endomorphism of V , as are the compositions

T 3 = T ◦ T ◦ T
T 4 : = T ◦ T ◦ T ◦ T

...

Each power of T ; T 2, T 3, T 4, . . . is thus another “vector” in the vector space L (V, V ). Since L (V, V ) is
n2-dimensional, it must be that the n2 + 1 linear transformations

1, T , T 2 , . . . , Tn
2

are linearly dependent. (Here 1 : V → V is the identity transformation of V defined by 1 (v) = v for all
v ∈ V .) Thus, there must be some equation of the form

α01+ α1T + α2T
2 + · · ·+ αn2Tn

2

= 0L(V,V ) .

(*)

This looks a lot like a polynomial equation. And in fact, under a suitable definition of what a polynomial
is be it is exactly a polynomial equation.

1. Digression: Polynomials

Definition 17.1. An indeterminant is symbol x that generates a list of symbols x0, x1, x2,via the multi-
plication rule

xixj = xjxi = xi+j

It is most common to denote x0 by 1 and to denote x1 by x.

1
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Definition 17.2. Let F be a field and x an indeterminate. The set of polynomials over F is the set F [x] of
formal expressions of the form

a0 + a1x+ a2x
2 + · · ·+ anxn , a1, . . . , an ∈ F , n <∞ .

Two polynomials

a0 + a1x+ · · ·+ anxn

b0 + b1x+ · · ·+ bmxm

say, with m ≤ n , are regarded the same if ai = bi for all i between 0 and m, and aj = 0 for all j such that
m < j ≤ n.

This set is given the structure of a vector space over F via the following definitions of scalar multiplication
and vector addition.

λ · (a0 + a1x) + · · ·+ anx2 = (λa0) + (λa1)x+ · · ·+ (λan)xn , ∀ λ ∈ F .(
a0 + a1x+ · · ·+ anx2

)
+ (b0 + b1x+ · · ·+ bnxn) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn

(where we may have added terms of the form 0F · xj to one or both of these polynomials to express it as a
sum of n+ 1 terms). In addition, the set F [x] is given a multiplicative structure via(

a0 + a1x+ · · ·+ anx2
)
· (b0 + b1x+ · · ·+ bmxm) =

n∑
i=0

m∑
j=0

aibjx
i+j .

Remark 17.3. It is also possible to define polynomials without indeterminants as in

Definition 17.4. The set of polynomials over a field F is the set of finite sequences [a0, a1, . . . , an] of
elements of F modulo equivalence relations of the form

[a0, a1, . . . , an, 0F, . . . , 0F] = [a0, a1, . . . , an]

The place of the last nonzero entry of a polynomial is called the degree of the polynomial. The set of
polynomials over F is naturally an (infinite-dimensional) vector space over F with scalar multiplication
defined by

λ [a0, a1, . . . , an] = [λa0, λa1, . . . , λan]

and vector addition defined by

[a0, a1, . . . , an] + [b0, b1 + · · ·+ bm] =
{
[a0 + b0, a1 + b1, . . . , am + bm, am+1, . . . , an] ; if n ≥ m
[a0 + b0, a1 + b1, . . . , an + bn, bn+1, . . . , bm] ; if m ≥ n

The product of two polynomials [a0, . . . , an] and [b0, . . . , bm] is the ordered list of m + n + 1 elements of F
whose i element is ∑

0≤k,≤i
ak+ibi

The rationale for introducing the notion of an indeterminant in the original defintion is two-fold. First of
all, it allows us to write down the rule for multiplying polynomials in a readily remembered and useable
form. That is, we can utilize the symbols 1, x, x2, . . . as the standard basis elements of the vector space of
polynomials and then define multiplication of polynomials via(

n∑
i=0

aix
i

) m∑
j=0

bjx
j

 =

n∑
i=1

m∑
j=1

(aibj)x
i+j

Secondly, the notion of an indeterminate allows us to think of evaluating polynomials by replacing x by
something more specific. However, we are not restricted to think of only replacing x by an element of
the field F. We just need to make sure that whatever we use to replace x by, that there are also suitable
replacements for x2, x3, . . ., consistent with the rule xixj = xi+j , and that we the multiplications λxi where
λ ∈ F are also well-defined. So in particular, we could think of replacing x by an n× n matrix, or even an
endomorphism of a vector space as in (*). Thus, given a polynomial f ∈ R [x], we can get
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• a function f : R→ R by replacing the indeterminate x with a real reparameter
• a function f : C→ C by replacing the indetermnate x with a complex parameter.
• a function f :M2×2 (R)→M2×2 (R) by replacing the indeterminate x by a real 2× 2 matrix.

Here’s a striking application of this ability for replace indeterminates by different types of parameters.

Theorem 17.5 (Cayley-Hamilton Theorem). Let A be an n× n matrix and let

P (λ) = det (A− λI)

where A − λI is the n × n matrix formed from A by subtracting an indeterminate λ from its diagonal
elements. Then

P (A) = 0Matn×n

(The proof of this theorem won’t come until we reach §24 of the text.)

Example 17.6. Consider the case of a 2× 2 matrix

A =

(
a b
c d

)
⇒ A− λI =

(
a− λ b
c d− λ

)
and so

⇒ P (λ) = det (A− λI) = (a− λ) (d− λ)− bc = (ad− bc)λ0 + (−a− d)λ− dλ+ λ2

Now if we replace λ0 by A0 =

(
1 0
0 1

)
, λ by A =

(
a b
c d

)
and λ2 by A2 =

(
a2 + bc ab+ bd
ac+ cd d2 + bc

)
, we

find

P (A) = (ad− bc)
(
1 0
0 1

)
+ (−a− d)

(
a b
c d

)
+

(
a2 + bc ab+ bd
ac+ cd d2 + bc

)
=

(
ad− bc 0
0 ad− bc

)
+

(
−a2 − ad −ab− db
−ac− dc −ad− d2

)
+

(
a2 + bc ab+ bd
ac+ cd d2 + bc

)
=

(
0 0
0 0

)

2. Back to Endomorphisms

OK, we have just discovered that each endomorphism T ∈ L (V, V ) satisfies some polynomial equation; and
what this means is that there is a polynomial p ∈ F [x] such that when replace the indeterminate x with
T and interprete the resulting algebraic expression as another endomorphism of V , then f (T ) is the zero
endomorphism 0L(v,v) (v) = 0V for all v ∈ V .

In fact, we can in a similar fashion “evaluate” any polynomial f ∈ F [x] at x = T . The following rules
of evaluation follow directly from the two defining properties of an endomorphism (i.e., compatibility with
scalar multiplication and vector addition):

Lemma 17.7. Let T ∈ L (V, V ) and let f, g ∈ F [x]. Then

(a) f (T )T = Tf (T )
(b) (f ± g) (T ) = f (T )± g (T )
(c) (fg) (T ) = f (T ) g (T )

Ok. Let’s now tighten up our observation that every endomorphism satsifies a polynomial equation.
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Theorem 17.8. Let T ∈ L (V, V ). Then there exists a polynomial m (x) ∈ F [x] of the form

m (x) = xr + ξr−1x
r−1 + · · ·+ ξ1x+ ξ0

with the properties

1. m (T ) = 0
2. If f (x) is any polynomial in F [x] such that f (T ) = 0, then m (x) divides f (x) in F [x] (meaning
f (x) = q (x)m (x) for some polynomial q (x) ∈ F [x]).

Proof. We have already seen that the endomorphisms 1, T, T 2, . . . , Tn
2

must be linearly dependent (since
dimL (V, V ) = n2). Let r be the smallest integer such that

1, T, T 2, . . . , T r−1 are linearly independent

while

1, T, T 2, . . . , T r−1, T r are linearly dependent .

Then there must be a dependence relation of the form

ξ01+ ξ1T + · · ·+ ξr−1T r−1 + T r = 0

So setting

m (x) = xr + ξr−1x
r−1 + · · ·+ ξ1x+ ξ0

will have the stated form and will satisfy 1.

Now suppose f is any other polynomial such that f (T ) equal 0, Because 1, T, . . . , T r−1 are linearly inde-
pendent, there can not exist a polynomial of lower degree < r that satisfies f (T ) = 0. By the Division
Algorithm for polynomials, there exist unique polynomials q (x) and r (x) such that

f (x) = q (x)m (x) + r (x) and either r (x) = 0 or deg (r) < deg (m)

Suppose f (x) = q (x)m (x) + r (x) and deg (r) < det (m). Then

0 = f (T ) = q (T )m (T ) + r (T ) = q (T ) · 0+ r (T ) ⇒ r (T ) = 0

which contradicts the condidition that m is the polynomial of lowest degree that evaluates to 0 when
substitute T for x. Thus, it must be the case that r (x) = 0. Hence,

f (x) = q (x)m (x) .

Definition 17.9. Let T ∈ L (V, V ). The polynomial m (x) ∈ F [x] defined in the preceding theorem is called
the minimal polynomial of T : m (x) is characterized as the non-zero polynomial of minimal degree such
that m (T ) = 0. If we normalize the leading coeffi cient to 1F, then m (x) is unique.

Examples 17.10. (1) Let T =

 0 1 1
0 0 1
0 0 0

. Then
T2 =

 0 1 1
0 0 1
0 0 0

 0 1 1
0 0 1
0 0 0

 =

 0 0 1
0 0 0
0 0 0


T3 =

 0 0 0
0 0 0
0 0 0


So if f (x) = x3. We have f (T ) = 0. In fact, f (x) = x3 is the minimal polynomial of T. This is
because the minimal polynomial mT (x) of T has to divide f (x). But the only nontrivial factors
of f (x) = x3 are x and x2 and neither of these vanish when evaluated at T. Thus, mT (x) = x3
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(2) Let T =
(
2 0
0 2

)
. Then

T2 =

(
4 0
0 4

)
= 2 ·T

so
T2 − 2T = 0

The minimal polynomial of T must therefore divide x2 − 2x. There are three possibilities:
x2 − 2x = x (x− 2)

So mT could be x, x− 2, or x (x− 2). It can’t be x since T 6= 0 However,
T− 2I = 0

So mT (x) must be the minimal polynomial of T.

3. Eigenvectors and Eigenvalues

It will take us a while before we begin to identify the minimal polynomial of a given endomorphism.

We shall start with a simpler problem. Rather than try to identify the “smallest”polynomial f (x) such
that f (T ) ∈ L (V, V ) sends each vector v ∈ V to 0V , we shall look for the simplest sort of polynomial that
can send a particular non-zero vector to 0V . Now such a polynomial can not be a polynomial of degree 0;
because that would mean f (x) = a ∈ F, with a 6= 0F. And so

f (T ) v = (a · 1) (v) = av = 0 only if v = 0V .

So the simplest possibility would be a linear polynomial of the form f (x) = x− λ.

Definition 17.11. A non-zero vector v is an eigenvector of an endomorphism T : V → V if there exists
a λ ∈ F such that (T − λ1) v = 0V . The corresponding λ is called the eigenvalue of T corresponding to v.

Theorem 17.12. Suppose (v1, λ1) , (v2, λ2) , . . . , (vk, λk) are eigenvector/eigenvalue pairs for a linear trans-
formation T : V → V and that the eigenvalues λ1, . . . , λk are all distinct. Then the corresponding eigenvec-
tors are linearly independent.

Proof. Suppose first that k = 1. Then {v1} is a linearly independent set of eigenvectors and so the statement
is true. Now suppose the statement is true for all k < n. Suppose there was a dependence relation amongst
the eigenvectors v1, . . . , vn. Then we’d have

(*) a1v1 + · · ·+ anvn = 0V
Suppose that some coeffi cient ai 6= 0F. We shall show that this contradicts the induction hypothesis.
Applying T to both sides of (*) we get

(**) a1λ1v1 + · · ·+ aiλivi + · · ·+ anλnvn = 0V
Multiplying (*) by λi and subtracting it from (**) yields

a1 (λ1 − λi) v1 + · · ·+ ai (λi − λi) vi + · · ·+ an (λn − λi) vn = 0V
Since the ith term on the left hand side of this last expression vanishes identically, there are at most n− 1
non-zero terms on the left hand side. By the induction hypothesis, the vectors v1, . . . , vi−1, vi+1, . . . , vn
must be linearly independent. So we must have

a1 (λ1 − λi) = 0F , . . . , ai−1 (λi−1 − λi) = 0F , ai+1 (λi+1 − λi) = 0F , . . . , an (λn − λi) = 0F
Since the λi 6= λj for i 6= j, we must have

a1 = 0F , . . . , ai−1 = 0F , ai+1 = 0F , . . . , an = 0F

But then the original expression (*) says

0V + 0v + · · ·+ · · ·+ 0V + aivi + 0V + · · ·+ 0V = 0V ⇒ ai = 0F
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Which contradicts our hypothesis that ai 6= 0F. Thus, there can be no dependence relation amongst the
vectors v1, . . . , vn. �

Application
Here is a nice application of this theorem. Let {r1, . . . , rk} be a list of distinct real numbers and consider the
corresponding exponential functions er1x, er2x, . . . , erkx. Show that these exponential functions regarded as
vectors in the vector space C∞ (R) of smooth differentiable functions on R are linearly independent.

Well, we have seen that the differential operator d
dx : C

∞ (R) → C∞ (R) is an endomorphism of C∞ (R).
Now note that each exponential function erix is an eigenvector for d

dx with eigenvalue ri.

d

dx
erix = rie

rix .

Since the functions er1x, . . . , erkx have distinct eigenvalues with respect to d
dx they must be linearly inde-

pendent. �

4. Digression: Determinants of Endomorphisms

The determinant function as we defined it in Lecture 16 is only applicable to square matrices. On the other
hand, once we have a basis B = {v1, . . . , vn} for V we can attach to any endomorphism T : V → V a square
matrix

AT,B =

 | |
T (v1)B · · · T (vn)B
| |


Here T (vi)B , i = 1, . . . n, is the coordinate vector of the vector T (vi) with respect to the basis B. This
furnishes us with an n× n matrix that will allow us to define a determinant function for T ; we set

DetB (T ) = det (AT,B)

If we had adopted another basis B′ for V , we could end up with a very different matrix AT,B′ , and so it
could happen that our notion of a determinant for T depends not only on T but on the basis B. However,
it turns out that DetB (T ) is independent of B.

To see this, recall the Change-Of-Basis theory developed in Lecture 15. Suppose we have two bases
B = {v1, . . . , vn} and B′ = {v′1, . . . , v′n} for V . Then by expressing the vectors v′i as as linear combinations
of the vectors vj and reading off the coeffi cients we can form a change-of-basis matrix CB,B′ that maps
coordinate vectors with respect to B directly to the coordinate vectors with respect to B′ :

vB
↗ iB

V 3 v ↓ CB,B′
↘ iB′

vB′ = CB,B′vB

We can use this change of basis matrix to relate the matrices AT,B and AT,B′ . Let v be an arbitrary
vector in V . The whole point of the matrices AT,B and AT,B′ is that they allow us to implement the linear
transformation T directly on coordinate vectors:

T (v)B = AT,BvB ((i))

T (v)B′ = AT,B′vB′ ((ii))

So, on the one hand,
AT,BvB = AT,B (CB′BvB′) = AT,BCB′,BvB′
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and on the other

T (v)B′ = CB,B′T (v)B
= CB,B′AT,BvB

= CB,B′AT,BCB′,BvB′

But then (ii) implies
AT,B′ = CB,B′AT,BCB′,BvB′

Now let’s compute the determinant of both sides

det (AT,B′) = det (CB,B′AT,BCB′,BvB′)

= det
(
CB,B/

)
det (AT,B) det (CB′,B)

But
CB,B′ = (CB′,B)

−1

and so

det (CB,B′) =
1

det (CB′,B)

whence
det (AT,B′) = det (AT,B)

We conclude:

Theorem 17.13. The function Det : L (V, V )→ F defined by

Det (T ) = det (AT,B) for some basis B of V

is independent of the choice of B.

5. Back to Eigenvectors and Eigenvalues

Theorem 17.14. Let V be a finite-dimensional vector space and let T ∈ L (V, V ) and let λ ∈ F. Then λ is
an eigenvalue of T if and only if the determinant of T − λ1 is equal to 0F.

Proof.

First, suppose λ is an eigenvalue of T . So there is a corresponding v ∈ V such that T (v) = λv. Then the
vector v lies in the kernel of the operator T − λ1; for

(T − λ1) (v) = T (v)− λv = λv − λv = 0V .

Since T − λ1 has a non-trivial kernel, it must have determinant 0F.

Conversely, suppose T − λ1 has determinant 0F. Then then it has a non-trivial kernel. So we can find a
non-zero vector v ∈ ker (T − λ1). But then

0V = (T − λ1) (v) = T (v)− λv ⇒ T (v) = λv

and so λ is an eigenvalue of T .

5.1. Examples. We’ll start with some matrix examples as that is anyway the arena where more general
examples are to be calculated.

The basic procedure for finding the eigenvalues and eigenvectors of a matrix A is as follows:

• Find the roots of the polynomial equation det (A− λ1) = 0.
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• Each λ satisfying det (A− λ1) will be an eigenvalue. To find the corresponding eigenvectors we
look for solutions of the linear system

(A− λI)x = 0
This is a homogeneous linear system. It is (hopefully, by now) straight-forward to find a basis
for solution space of such a homogeneous linear system. The vectors in this basis can be used
as a complete set of linearly independent eigenvectors with eigenvalue λ. However, if you have
multiple eigenvalues, you will have to carry out such a computation for each eigenvalue.

Example 17.15. Find the eigenvalues and eigenvectors of A =

 3 0 0
0 2 0
0 0 2

.
• We have

det (A− λ1) = det

 3− λ 0 0
0 2− λ 0
0 0 2− λ

 = (3− λ) (2− λ)2

So the possible eigenvalues are the roots of (3− λ) (2− λ)2 = 0; that is, λ = 3, 2.

For the eigenvalue λ = 3 we find the corresponding eigenvectors by solving (A− 31)x = 0; or 0 0 0
0 −1 0
0 0 −1

 x1
x2
x3

 =

 0
0
0

 ⇒

 0 = 0
−x2 = 0
−x3 = 0

⇒ x2 = 0 = x3.

Thus, a solution, must have x2 = x3 = 0. The component x1, however, is free. And so, any vector of the
form

x =

 x1
0
0

 = x1

 1
0
0


will be an eigenvector of A with eigenvalue 3. We typically state the answer though in terms of the basis

vector

 1
0
0

.
For the eigenvalue λ = 2. We proceed in the same way,

(A− 21)x = 0 ⇒

 1 0 0
0 0 0
0 0 0

 x1
x2
x3

 =

 0
0
0

 ⇒ x1 = 0

The components x2 and x3 are free, however, Thus, the general solution will be

x =

 0
x2
x3

 = x2

 0
1
0

+ x3
 0
0
1


As before we usually just state the basis vectors for this solution space as our eigenvectors. So we have two
(linearly independent) eigenvectors corresponding to the eigenvalue = 2. In such a situation, we say that
the λ = 2 eigenspace is 2-dimensional. Note however that any vector of the form

s

 0
1
0

+ r
 0
0
1


will be an eigenvector of A with eigenvalue 2. �
Remark 17.16. In fact, it is more accurate to think in terms of eigenvalues and eigenspaces, rather than
eigenvalues and eigenvectors. For it is easy to see that if v1 and v2 are two eigenvectors with the same
eigenvalue λ, then any linear combination of v1 and v1 will be an eigenvector with eigenvalue λ.
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Example 17.17. Find the eigenvalues and eigenvectors of A =

 3 −2 5
1 0 7
0 0 2

 ., characteristic polynomial:

X3 − 5X2 + 8X − 4 = (X − 1) (X − 2)2

• We have

det (A− λ1) = det

 3− λ −2 5
1 −λ 7
0 0 2− λ

 = −λ3 + 5λ2 − 8λ+ 4 = (1− λ) (2− λ)2

So we apparently we have two eigenvalues λ = 1 and λ = 2.
• λ = 1

We need to solve (A− 1)x = 0. 2 −2 5
1 −1 7
0 0 2

 row reduce−−−−−−−−−−−→

 1 −1 0
0 0 1
0 0 0


From the reduced row echelon form of (A− 1) we see that vectors in the solution solution will
satisfy

x1 = x2 , x3 = 0

Thus, the eigenvectors for λ = 1 will be of the form

x = x2

 1
1
0


• λ = 2

We need to solve (A− 2 · 1)x = 0. Proceeding as we did for λ = 1: 1 −2 5
1 −2 7
0 0 0

 row reduce−−−−−−−−−−−→

 1 −2 0
0 0 1
0 0 0


Thus, our eigenvectors for λ = 2 will be vectors [x1, x2, x3] satisfying

x1 = 2x2 , x3 = 0

• In summary,

eigenvalue λ = 1 with eigenspace span

 1
1
0


eigenvalue λ = 2 with eigenspace span

 1
2
0


�

5.2. Algebraic and Geometric Multiplicities. Let’s compare the preceding two examples.

In the first example, the characteristic polynomial was (3− λ) (2− λ)2, and we found one (linearly indepen-
dent) eigenvector for the eigenvalue λ = 3 and two (linearly independent) eigenvectors for the eigenvalue
λ = 2.

In the second example, the characteristic polynomial was (1− λ) (2− λ)2 and we found one (linearly in-
dependent) eigenvector for the eigenvalue λ = 1 and only one (linearly independent) eigenvector for the
eigenvalue λ = 2.

This raises the question, how many eigenvectors should we expect for a given eigenvalue?
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To answer this question (albeit incompletely), we need a little more terminology.

If r is an eigenvalue of an n×n matrix A, then it is a solution of the polynomial equation det (A− λ1) = 0.
By the Fundamental Theorem of Algebra, this means that λ − r is a factor of det (A− λ1). This same
factor may appear multiple times, however, in a complete factorization of det (A− λ1).
Definition 17.18. The algebraic multiplicity of an eigenvalue r of a matrix is the largest integer m such
that (λ− r)m divides det (A− λ1).

Thus, in the first example, where det (A− λ1) = (3− λ) (2− λ)2, the eigenvalue 3 has algebraic multiplicity
1 and the eigenvalue 2 has algebraic multiplicity 2.

Definition 17.19. The geometric multiplicity of an eigenvalue r of a matrix is the dimension of the
corresponding eigenspace.

Thus, in the first example, since the λ = 2 eigenspace has two linearly independent eigenvectors, we say the
eigenvalue λ = 2 has geometric multiplicity 2.

In the second example, the λ = 2 eigenspace has only one linearly independent eigenvector, so its geometric
multiplicity is 1. (Note, the algebraic multiplicity of the λ = 2 eigenspace remains 2).

In general, so for any eigenvalue λ of an n× n matrix we have the following inequalities
1 ≤ geometric multiplicity ≤ algebraic multiplicity ≤ n

Remark 17.20. When the geometric multiplicity of an eigenvalue λ is > 1 we often refer to λ as a degen-
erate eigenvalue or this circumstance as a degeneracy.

5.3. Complex Eigenvalues and Eigenvectors. The next example will show that matrices do not
always have eigenvalues and eigenvectors.

Example 17.21. Consider the matrix A =

(
0 1
−1 0

)
. The characteristic polynomial for this matrix is

det (A− λ1) = det
(
−λ 1
−1 −λ

)
= λ2 + 1 6= 0 for any real value of λ

So if we were to insist on thinking of A as acting on the real vector space R2, we are not going to have any
eigenvectors or eigenvalues.

On the other hand, we could instead relax our restriction that the underlying field consists only of real
numbers. Doing so, we’d have two eigenvalues

λ2 + 1 = 0 ⇒ λ = ±
√
−1 ⇒ λ = i,−i

Can we find the corresponding eigenvectors?

Certainly, just be following the precedure as above.

• λ = i
First we find the solution set of (A− i1) = 0(
−i 1
−1 −i

)
R1 → iR1−−−−−−−−−−→

(
1 i
−1 −i

)
R2 → R2 +R1−−−−−−−−−−−−−−→

(
1 i
0 0

)
So we’ve reached a matrix in reduced row echelon form. The corresponding equations will be

x1 = −ix2
or

x = x2

(
−i
1

)
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Note that this eigenvector is not interpretable as a vector in R2, but it is interpretable as a vector
in C2.

• λ = −i
Proceding in the same way,

A− (−i)1 =
(

i 1
−1 i

)
R1 → −iR1−−−−−−−−−−−→

(
1 −i
−1 i

)
R2 → R2 +R1−−−−−−−−−−−−−−→

(
1 −i
0 0

)
And so

x1 = ix2 ⇒ x = x2

(
i
1

)
Thus, we have a complex eigenvalue λ = i with complex eigenvector

(
−i
1

)
and a complex

eigenvalue λ = −i with complex eigenvector
(

i
1

)
.

Remark 17.22. In many physical applications, the eigenvalues of a particular matrix have direct interpre-
tation as a real measurable quantity (for example, the moment of inertia of a body about a natural axis or
rotation). In such situations, the occurence of complex eigenvectors might put the physical interpretation
of the matrix in jeopardy. What usually saves the day in such situations is that the matrix for which
eigenvalues is symmetric, i.e. A = At. Maybe latter in the course we will prove

Theorem 17.23. If A is a symmetric n× n matrix, then

• all the roots of det (A− λ1) = 0 are real (and so A has only real eigenvalues).
• A has a total of n linearly independent eigenvectors. (Put another way, the sum of the geometric
multiplicities of the eigenvalues of A is n).


