
LECTURE 16

Determinants

We are now going to break with the text in two ways. First of all, since we have just spent the last couple
weeks discussing various applications of matrices to linear algebra, to me it seems much more natural to
move directly to the theory of determinants rather than to a discussion of inner products. Secondly, I will
opt for a more utililitarian definition of determinant (by defining how it by how it’s computed rather than
the properties it is to have).

We saw a couple lectures ago that while it is always possible to see if an n × n matrix is invertible by
checking that its reduced row echelon form coincides with the identity matrix, it is a pretty tedious check
to carry out. Wouldn’t it be nice if there was a simple function of the matrix entries whose value would
immediately tell you whether or not a matrix is invertible. Well, it turns out that there is such a function,
the determinant function; that’s simple enough to define, but a bit harder to compute.

It will also turn out that these determinant functions have lots and lots of applications.

Let me begin with Curtis’s definition. Recall that an n × n matrix corresponds to an ordered list of n
elements of Fn.

Definition 16.1. A determinant function D is a function that maps ordered lists of n elements of Fn
to an element of F satisfying the following three requirements:

(1) If {e1, . . . , en} is the standard basis for Fn, then

D ([e1, . . . , en]) = 1F

(which is equivalent to requiring the value of D on the identity matrix is 1F).
(2) D ([a1, . . . , ai + aj , . . . , aj , . . . , an]) = D ([a1, . . . , ai, . . . , aj , . . . , an])
(3) D ([a1, . . . , ai−1, λai, ai+1, . . . , an]) = λD ([a1, . . . , an])

Remark 16.2. Note that since any vector in Fn can be constructed from the standard basis vectors via
repeated application of vector addition and scalar multiplication, that (1) together with the rules (2) and
(3) provide a means for computing D ([a1, . . . , an]) for an arbitrary list of n vectors in Fn. What is not
so obvious from this defintion is that the results of such computations is independent of the way they are
carried out. Of course, this would have to be the case if a determinant function is to actually be well-defined
via this definition. But where’s the proof? Secondly, even if you can prove that the above definition can be
consistently satisfied, how do you know there is only one solution (i.e. that the determinant function thus
defined is unique). For this reason, I prefer the following definition.

Definition 16.3. Let M be an n×n matrix with entries in F. By definition the (ij)
th

-minor Mij of M is
the (n− 1)× (n− 1) matrix formed by deleting the ith row and jth column of M from M. The determinant
of M is then defined by the recursive formula

(i) det ([a]) = a for any 1× 1 matrix a
(ii) if n > 1, then

det (M) =

n∑
i=1

(−1)
i+j

Mij det (Mij) (for any fixed colunn index j)

1
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or

det (M) =

n∑
j=1

(−1)
i+j

Mij det (Mij) (for any fixed row index i)

Of course, there is still some ambiguity in the definition; how do we know that the the expansions on the
right hand side are independent of which column or row we choose to keep fixed.

So here’s a third, slightly more elaborate, definition of the determinant function.

Let Sn denote the set of permutations of the numbers 1, . . . , n. So for example

S3 = {[1, 2, 3] , [1, 3, 2] , [2, 1, 3] , [2, 3, 1] , [3, 1, 2] , [3, 2, 1]}
We can separate elements Sn into two classes, called even and odd, by the following algorithm. Fix a
permutation σ = [σ1, . . . , σn] ∈ Sn. Anytime we have a situation where an integer σj occurs before an σj
in σ but with σi > σj we’ll say σ has an inversion. For example,

σ = [2, 4, 3, 1]

has an inversions amongst the entries (1, 2), (1, 3), (1, 4) (because 1 < 2, 1 < 3, 1 < 4, but 2, 3, 4 precede 1
in σ) and an inversion (3, 4) (because 3 < 4 but 4 precedes 3 in σ). Thus σ has a total of 4 inversions. We
say that σ is an even permutation if σ has an even number of inversions, and σ is an odd permutation if σ
has an odd number of permutations.

Definition 16.4. The sign of a permutation σ ∈ Sn is

ε (σ) := (−1)
# inversions in σ

We think of ε as a function that maps permutations to ±1.

Here is an equivalent way of defining the function ε : Sn → {±1}. Let σ = [σ1, . . . , σn] be a permutation
and consider the product

(2)
∏

1≤i<j≤n

xσi
− xσj

xi − xj

Note that in denominator we have exactly one factor xk−x` for each ordered pair k < ` of distinct integers
k, ` ∈ {1, . . . , n}. In the numerator, however, we’ll either have a factor xk − x` or a factor x` − xk. The
latter case occuring whenever we have a situation where ` = σi, k = σj but ι < j. That is, whenever we
have an inversion in σ we’ll have a factor in the numerator that is −1 times a factor in the denominator.
Thus, ∏

1≤i<j≤n

xσi
− xσj

xi − xj
= (−1)

# inversions in σ
= ε (σ)

• We’ll need the following fact latter on

Fact 16.5. If σ differs from σ′ by a single interchange, then ε (σ′) = −ε (σ).

Proof. First we’ll prove an easy special case, when j = i+ 1. Suppose

σ = [σ1, . . . , σi−1,σi, σi+1, σi+2, . . . , σn]

σ′ = [σ1, . . . , σi−1,σi+1, σi, σi+2, . . . , σn]

Note that the except for the ordering of the specific pair σi, σi+1, all the relative ordering of the entries
pairs of entries of σ and σ′ are the same. However, when we look at the relative orderings of the ith and

(i+ 1)
th

entries, we have

σi < σi+1 ⇒ σ′i > σ′i+1 (since σ′i ≡ σi+1 and σ′i+1 ≡ σi)
σi > σi+1 ⇒ σ′i < σ′i+1 (same reason)
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Therefore, the number of inversions of σ will differ from the number of inversions of σ′ by exactly ±1.
Hence,

ε (σ′) = (−1)(
# inversions of σ′) = (−1)

(# inversions of σ) ±1
= ε (σ) (−1)

±1
= −ε (σ) .

Now let’s consider the more general case where σi and σj are not necessarily neighboring entries in σ.
Suppose σ = [σ1, . . . , σi, . . . , σj , . . . , σn] and σ′ = [σ1, . . . , σj , . . . , σi, . . . , σn] (i.e, σ′ differs from σ by a
single interchange σi ←→ σj), We can systematically convert σ to σ′ via a sequence of nearest neighbor

exchanges. Let si be the operation that interchanges the ith entry of a permutation with the (i+ 1)
th

entry.
Then

sjsj−1 · · · si (σ) = [σ1, . . . , σi−1, σi+1, . . . , σj , σi, . . . , σn]

(each successive s∗ bumps σi further along to the right). Next we apply the interchanges sj−1, sj−2, . . . , si
in succession to bump σj off to left until it occupies the place originally occupied by σi. Thus,

σ′ = sisi+1 · · · sj−1sjsj−1 · · · si (σ)

Note that this is always an odd number of nearest neighbor interchanges (notice how sj sits right at the
center of composition flanked by si · · · sj−1 on one side and sj−1 · · · si on the other). By our earlier result,
each of these nearest neighbor interchanges has the effect of flipping the sign of ε (σ). Since we have an odd

number of them, the total sign flip will be (−1)
odd number

= −1. So our desired conclusion follows. �

Definition 16.6. Let Sn be the set of permutations of the numbers 1, 2, . . . , n. The determinant of an
n× n matrix M over a field F is the element of F determined by the following formula

(3) det (M) =
∑
σ∈Sn

ε (σ)M1σ1M2σ2 · · ·Mnσn .

Proposition 16.7. The determinant function det has the following properties.

(i) det(In) = 1 if In is the n× n identity matrix.
(ii) If M′ is a matrix obtained from M by replacing one row of M by its scalar multiple by λ ∈ F, then

det (M′) = λ det (M) .

(iii) If M′′ is a matrix obtained from M by replacing one row of M by its vector sum with another row
of M then

det (M′′) = det (M) .

Proof.

(i) If M = In, then Mij =

{
1 if i = j
0 if i 6= j

. Thus, the products M1σ1
M2σ(2) · · ·Mnσn

on the right hand side

of (**) will be non-zero only when 1 = σ1, 2 = σ2, . . . , n = σn. That is to say, only one term in the sum
on the right hand side of (**) will be non-zero; it will correspond to σ = [1, 2, . . . , n]. But then since

ε ([1, 2, . . . , n]) ≡ P (x1, x2, . . . , xn)

P (x1, x2, . . . , xn)
= +1

it follows that

det (In) = ε ([1, 2, . . . , n])M11M22 · · ·Mnn = (+1) · 1 · 1 · · · · · 1 = 1 .

(ii) Note that each term on the right hand side has exactly one factor from each row of M (observe that
each term in the sum is a product of entries in distinct rows, with each row contributing one factor). Thus,
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if we create M′ by scalar multiplying the ith row of M by λ ∈ F, then exact one factor Miσi in each term
of det (M) picks up a factor of λ. Thus,

det (M′) =
∑
σ∈Sn

ε (σ)M1σ1M2σ2 · · · (λMiσi) · · ·Mnσn

= λ
∑
σ∈Sn

ε (σ)M1σ1M2σ2 · · ·Mnσn

= λ det (M)

(iii) Suppose M′′ is obtained form M by adding row j to row i. Then

det (M′′) =
∑
σ∈Sn

ε (σ)M1σ1M2σ2 · · · (Miσi +Mjσi) · · ·Mjσj · · ·Mnσ

=
∑
σ∈Sn

ε (σ)M1σ1M2σ2 · · ·Miσi · · ·Mjσj · · ·M +
∑
σ∈Sn

ε (σ)M1σ1M2σ2 · · ·Mjσi · · ·Mjσj · · ·M

= det (M) +
∑
σ∈Sn

ε (σ)M1σ1M2σ2 · · ·Mjσi · · ·Mjσj · · ·Mnσn .

Now let’s look at the second term on the right:∑
σ∈Sn

ε (σ)M1σ1
M2σ2

· · ·Mjσi
· · ·Mjσj

· · ·Mnσn

Note that the factor ε (σ) is flip sign under the interchanges i←→ j. That is to say, if

σ = [σ1, . . . , σi, . . . , σj , . . . , σn]

and

σ′ = [σ1, . . . , σj , . . . , σi, . . . , σn]

then we’ll have ε (σ′) = −ε (σ). Note also since we sum over all permutations, for every term

(*) ε (σ)M1σ1
M2σ2

· · ·Mjσi
· · ·Mjσj

· · ·Mnσn

there will be a corresponding term

ε (σ′)M1σ1M2σ′2
· · ·Mjσ′i

· · ·Mjσ′j
· · ·Mnσ′n

= −ε (σ)M1σ1M2σ2 · · ·Mjσj · · ·Mjσi · · ·Mnσn

which, after reordering factors, is identical to (*) except opposite in sign. Hence, for each term (*) in the
sum there will be another term that cancelling it. Thus,∑

σ∈Sn

ε (σ)M1σ1M2σ2 · · ·Mjσi · · ·Mjσj · · ·Mnσn = 0

We conclude

det (M) = det (M′′) .

�

We thus see that our determinant function satisfies the properties of Curtis’s definition.

Corollary 16.8. Let M be an n× n matrix.

(i) If M′ is a matrix obtained from M by interchanging two rows then det (M′) = −det (M) .
(ii) If M′′ is a matrix obtained from M by adding a scalar mulitple of one row to another row then

det (M′′) = det (M) .
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Proof.

(i) A row interchange can be implemented using the operations (ii) and (iii) of the preceding theorem. This
I will demonstrate by example on a 2× 2 matrix(

a b
c d

)
R1 → −R1

R2 → R2 +R1
−−−−−−−−−−−−−−−−→

(
−a −b
a+ c b+ d

)
R1 → R1 +R2−−−−−−−−−−−−→

(
c d

a+ c b+ d

)

R1 → −R1−−−−−−−−−−−→

(
−c −d
a+ c b+ d

)
R2 → R2 +R1

R1 → −R1
−−−−−−−−−−−−−−→

(
c d
a b

)
By the preceding theorem the only time the determinant would change is when we multiplied a row by −1.
Since we did this three times we have a total factor of (−1) (−1) (−1) = −1. If we substitute R1 → Ri and
R2 → Rj , then this same sequence of operations could be used to implement a row interchange between the
ith and jth rows of a general n× n matrix. Again since there a total of three sign flips would occur in the
determinants of the intermediary matrices, the statement to be proved follows.

(ii) This is proved similarly. If one applies the following sequence of operations

Ri →
1

λ
Ri

(
determinant changes by a factor

1

λ

)
Ri → Ri +Rj (determinant doesn’t change)

Ri → λRi (determinant changes by a factor λ)

the overall effect will be the replacement of row i with its sum with λ times row j. According to the
preceding theorem, the change in the determinant would be a factor of

(
1
λ

)
(λ) = 1; that is to say, the

determinant would not change under this overall transformation. �

Proposition 16.9. Let Mij be the (ij)
th

minor of an n× n matrix M (as in Definition 5.3). Then if we
define det (M) as in Definition 15.4 we have

det (M) =

n∑
j=1

(−1)
i+j

det (Mij) for any fixed row index i .

Proof. Let’s first concentrate on the case where i = 1. When [1, 2, . . . , n] is permuted to a new order
σ = [σ1, σ2, . . . , σn], the initial 1 either stays put or goes to some other slot. In fact, we can break the set
Sn or permutations into n disjoint sets

Sn,i = {σ ∈ Sn | σi = 1}

This decomposition in turn allows us to decompose the sum over Sn in Definition 15.4

det (M) =

n∑
j=1

∑
σ∈Sn,j

ε (σ)m1σ1m2σ2 · · ·mnσn

=
∑

σ∈Sn,1

ε (σ)m11m2σ2
· · ·mnσn

+
∑

σ∈Sn,2

ε (σ)m1σ1
m21 · · ·mnσn

+ · · ·
+
∑

σ∈Sn,i

ε (σ)m1σ1
m2σ2

· · ·mn1
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= m11

∑
σ∈Sn,1

ε (σ)m2σ2
· · ·mnσn

+m21

∑
σ∈Sn,2

ε (σ)m1σ1
· · · m̂21 · · ·mnσn

+ · · ·
+mn1

∑
σ∈Sn,i

ε (σ)m1σ1
m2σ2

· · ·mn−1,σn−1

(Here and below a ̂ over a symbol indicates that the term below the hat does not appear in the pattern
indicated by the ellipses · · · .) What I’ll show below is that

(**)
∑

σ∈Sn,i

ε (σ)m1σ1 · · · m̂iσi · · ·mnσn = (−1)
1+i

det (Mi1)

Indeed, the left hand side already looks a lot like our formula for a determinant; however, since Mi1 is an
(n− 1)×(n− 1) matrix, we need to relate the left hand side to a sum over the permutations of [1, . . . , n− 1]
and verify that it actually coincides with

(***) (−1)
1+i

∑
σ′∈Sn−1

ε (σ′) (Mi1)1σ′1
(Mi1)2σ′2

· · · (Mi1)n−1,σ′n−1

(which is the right hand side of (***) written out explicitly via our definition of det (Mi1)).

So let me first establish an explicit connection between the permutations in Sn−1 and those in Sn,i ⊂ Sn.
For σ′ =

[
σ′1, . . . , σ

′
n−1
]
∈ Sn−1, define ηi (σ′) ∈ Sn,i by

(ηi (σ′))j =


σ′j + 1 if σ′j < i

1 if σ′j = i
σ′j + 1 if σ′j > i

By construction, ηi (σ′) is always an arrangement of the numbers 1, . . . , n with a 1 in the ith slot, thus.
ηi (σ′) is an element of Sn,i. In fact, ηi provides a bijection between Sn−1 and Sn,i and∑

σ∈Sn,i

ε (σ)m1σ2
· · · m̂i1 · · ·mnσn

=
∑

σ′∈Sn−1

ε (ηi (σ′))m1η(σ′)1
· · · m̂i1 · · ·mnη(σ′)n

=
∑

σ′∈Sn−1

ε (ηi (σ′))m1,σ′1+1 · · · m̂i1 · · ·mn,σ′n+1

=
∑

σ′∈Sn−1

ε (ηi (σ′)) (Mi1)1,σ′1
· · · (Mi1)n−1,σ′n−1

(I’m just using the fact that every element of Sn,i is the image by ηi of an element σ′ ∈ Sn−1, and then
relating the factors m1η(σ′)1

· · · m̂i1 · · ·mnη(σ′) to products of the entries of the minor matrix Mi1). If I can
show that

(****) ε (ηi (σ′)) = (−1)
1+i

ε (σ′)

then the identity that we need, (**), will follow.

OK, so let’s fix i and an particular σ′ ∈ Sn−1 and set σ = ηi (σ′). Then the way we have things set up

σ =
[
σ′1 + 1, σ′2 + 1, . . . , σi−1 + 1, 1, σi + 1, . . . , σ′n−1 + 1

]
We have

ε (σ) = (−1)
# inversions in the list σ

ε (σ′) = (−1)
# inversions in the list σ′

Now notice that to every inversion in
[
σ′1, σ

′
2, . . . , σi−1, σ

′
i, . . . , σ

′

n−1

]
there will be a corresponding inversion

of
[
σ′1 + 1, σ′2 + 1, . . . , σi−1 + 1, 1̂ , σi + 1, . . . , σ′n−1 + 1

]
and hence an inversion of

[
σ′1 + 1, σ′2 + 1, . . . , σi−1 + 1, 1, σi + 1, . . . , σ′n−1 + 1

]
.
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In fact, we’ll have a 1-1 correspondence between the inversions in σ′ and the inversions of σ that don’t in-
volve that fixed 1 entry in the ith place. On the other hand, there will be exactly i − 1 inversions in[
σ′1 + 1, σ′2 + 1, . . . , σi−1 + 1, 1, σi + 1, . . . , σ′n−1 + 1

]
that do involve that fixed 1 entry; because each since

σ′j + 1 is always greater than 1, each of the i − 1 entries of σ that occur the ith entry 1 will lead to an
inversion. Hence,

# inversions in the list σ = # inversions in the list σ′ + (i− 1)

Thus,

ε (σ) = (−1)
# inversions in the list σ

= (−1)
# inversions in the list σ′+(i−1)

= (−1)
i+1

ε (σ′)

We have thus, demonstrated (****), hence (**) and the proposition follow. �

�

Proposition 16.10. Let Mt be the transpose of an n× n matrix M. Then

det
(
Mt
)

= det (M)

Proof. This formula could probably be proved by staring hard enough at the formula for det (M), however,
I’m just as likely to go cross-eyed trying. So rather than prove it using only the tools at hand, let me try
to indicate the outlines of a simple proof using representation theory (which I do not expect to be all that
understandable, but it will serve as a nice advertisement for my own field). The function σ : Sn → ±1 is an
example of what’s known as a group character. More generally, a group character is a function χ : G→ C
on a group G such that

χ (gg′) = χ (g)χ (g′)

(equivalently, χ is a group homomorphism from G to C).

Consider a typical term in our definition of the determinant

ε (σ)M1σ1M2σ2 · · ·Mnσn

Note that each integer between 1 and n occurs as one of the column indices on the right, so in principle we
could order the factors by their column indices rather than their row indices. But then row indices would
appear in some other order τ .

M1σ1M2σ2 · · ·Mnσn = Mτ11Mτ22 · · ·Mτnn

It turns out that τ = σ−1 as elements of the permutation group. In other words, if we write

e = [1, 2, . . . , n]

for the identity permutation, then τ and σ will satisfy στ = e. But then since ε (e) = ε ([1, . . . , n]) = 1,
we’ll have

1 = ε (e) = ε (στ) = ε (σ) ε (τ)

which will imply ε (σ) = ε (τ) since ε only has the values ±1. Thus,

ε (σ)M1σ1M2σ2 · · ·Mnσn = ε (σ)Mτ11 · · ·Mτnn = ε (τ)Mτ11 · · ·Mτnn

And so now we have a fomula

((***)) det (M) =
∑
τ∈Sn

ε (τ)Mτ11 ·Mτnn

But then

det
(
Mt
)

=
∑
τ∈Sn

ε (τ)M1,τ1
·Mn,τn

= det (M)

�

Corollary 16.11. Let M be an n× n matrix and let j be any column index.

det (M) =

n∑
i=1

(−1)
i+j

det (Mij)
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Proof. This follows readily from the forrmula (***) by essentially the same arguments we used to prove
Proposition 15.7. �

1. Computing Determinants via Row Reduction

Theorem 16.12. Suppose A is an n× n matrix in row echelon form. Then

det (A) =

n∏
i=1

Aii

that is to say, the determinant of A will be the product of its entries along its main diagonal.

Proof. We will proceed by induction on n. The statement is certainly true for a 1× 1 matrix.

Now suppose it is true for (n− 1) × (n− 1) matrices. If we do a cofactor expansion of det (A) along the
last row, we’ll have

det (A) =

n∑
j=1

(−1)
n+j

Anj det (Anj)

Now because A is assumed to be in row echelon form only last term will be non-zero (as we’ll have Anj = 0
when j < n). Thus,

det (A) = (−1)
n+n

Ann det (Ann) = Ann det (Ann) .

But then if A is in row echelon form, so will be its n, n minor Ann. Since this minor is an (n− 1)× (n− 1)
matrix we can apply the inductive hypothesis

det (Ann) = product of its diagonal entries =

n−1∏
i=1

Aii

Thus,

det (A) = Ann

(
n−1∏
i=1

Aii

)
=

n∏
i=1

Aii .

�

We can now combine the preceding theorem with Proposition 15.5 and Corollary 15.6 to yield the following
algorithm for computing the determinant of an n× n matrix.

Theorem 16.13. Suppose A is an n× n matrix and A′ is a matrix in row echelon form obtained from A
by a sequence R1,R2, . . . ,Rk of elementary row operations. Then

det (A) = (−1)
s

(
t∏
i=1

λi

) n∏
j=1

A′jj


where

(i) s is the number of row interchanges amongst the operations R1, . . . ,Rk;
(ii) there is a factor λi for each elementary row operation that is scalar multiplication of a row by λi;

(iii) the A′jj are the diagonal entries of the row echelon form A′.

This theorem in turn gives us three more important properties of the determinant.

Theorem 16.14. Suppose A is an n× n matrix and rank (A) < n, then det (A) = 0.
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Proof. If A has rank < n, then any row echelon form A′ of A will have all 0’s in the last row. But then
A′nn = 0. Since this A′nn is one of the factors of in the formula of the preceding theorem, we can conclude
that det (A) = 0. �

Finally we come to an extremely useful formula for the determinant of a product of two n× n matrices.

Theorem 16.15. Suppose A and B are invertible n× n matrices. Then

det (AB) = det (A) det (B) .

Proof. Suppose first that A has rank n. Then A is reducible to the n× n identity matrix by a sequence of
elementary row operations

A R1−−→ A1 R2−−→ A2 R3−−→ · · · Rk−−→ In

These same elementary row operations could be implemented via multiplication by the corresponding ele-
mentary matrices:

A→ ER1A→ER2ER1A→ · · · → ERk
· · · ER2ER1A = In .

On the other hand, this same sequence or elementary row operation could be applied to the product AB :

AB R1−−→ (AB)1 R2−−→ (AB)2 R3−−→ · · · Rk−−→ (AB)k

or via multiplication via the same sequence of elementatry matrices

AB→ ER1AB→ER2ER1AB→ · · · → ERk
· · · ER2ER1AB = InB = B .

In other words, the sequence of elementary row operations that converts A to In, will convert the product
AB to B.

Now suppose this sequence elementary row operations R1, . . . ,Rk has s row interchanges and has t row
rescalings by factors λ1, λ2, . . . , λt. Then, on the one hand,

det (AB) = (−1)
s

(
t∏
i=1

λi

)
det (B)

while, on the other hand, we’ll also have

det (A) = (−1)
s

(
t∏
i=1

λi

)
det (In) = (−1)

s

(
t∏
i=1

λi

)
.

Thus,

det (AB) = det (A) det (B) .

Finally, in the situation where rank (A) < n, it easy to see that rank (AB) < n (because the columns of
the product AB will be linear combinations of the columns of A and so if the rows of A are not linearly
independent, the row of AB can’t be linearly indepdent either)

0 = det (AB) = 0 · det (B) = det (A) det (B)

and thus the stated formula holds in this situation as well. �

Corollary 16.16. Suppose A is an invertible n× n matrix. Then

det
(
A−1

)
=

1

det (A)
.

Proof. We have

1 = det (In) = det
(
A−1A

)
= det

(
A−1

)
det (A) ⇒ det

(
A−1

)
=

1

det (A)
.

�
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2. Cramer’s Rule

Determinants provide a way of solving certain n× n linear systems.

Theorem 16.17 (Cramer’s Rule). Suppose the coefficient matrix A of an n× n linear system Ax = b has
a non-zero determinant. Then the solution of this system is given by

xi =
det (Ai)

det (A)
, i = 1, 2, . . . , n

where Ai is the matrix obtained from A by replacing its ith column with the column vector b.

Proof. Suppose x = [x1, . . . , xn] is a solution.

b = Ax = x1c1 + x2c2 + · · ·+ xncn

where c1, . . . , cn are the columns of A. By assumption, det (A) 6= 0, and so the column vectors c1, . . . , cn
are linearly independent. On the other hand,

det (Ai) = det ([c1, . . . , ci−1,b, ci+1, . . . , cn])

= det (([c1, . . . , ci−1,x1c1 + · · ·+ xncn, ci+1, . . . , cn]))

=

n∑
j=1

xj det ([c1, . . . , ci−1, cj , ci+1, . . . , cn])

Now whenever j 6= i in the sum we’ll be taking the determinant of a matrix with two identical columns -
such a determinant will vanish identically since the columns won’t be linearly independent. Thus, only the
term where j = i will contribut to the sum:

det (Ai) = 0 + 0 + · · ·+ 0 + xi det (c1, . . . , ci−1, ci, ci+1, . . . , cn) + 0 + · · ·+ 0

= xi det (A)

Since det (A) 6= 0 we can solve divide both sides of this last equation by det (A) to get

xi =
det (Ai)

det (A)
.

�

This result also gives a new way of computing the inverse of a matrix. For if A is invertible, we must also
have

x = A−1b

as the unique solution to Ax = b. Thus

(*) A−1b =


det(A1)
det(A)

...
det(An)
det(A)

 =
1

det (A)

 det (A1)
...

det (An)


Now

(**) detAi = det


a11 b1 a1n

bi

an1 bn ann

 =

n∑
j=1

(−1)
i+j

bj det (Aij)

If we define the adjoint matrix C of A by

(***) (C)ij = (−1)
i+j

(det (Aji))
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then (**) can be rewritten as

det (Ai) =

n∑
j=1

(−1)
i+j

bj det (Aij) =

n∑
j=1

(Cij) bj = (Cb)i

Inserting these expressions for det (Ai) inot the right hand side of (*), then yields

A−1b =
1

det (A)
Cb

We conclude

A−1 =
1

det (A)
C

where C is the adjoint matrix defined by (***).

Example 16.18. Compute the inverse of a general (invertible) 2× 2 matrix.

• Let

A =

(
a b
c d

)
We have

A11 = [d] ⇒ C11 = (−1)
1+1

det ([d]) = d

A12 = [c] ⇒ C21 = (−1)
1+2

det ([c]) = −c
A21 = [b] ⇒ C12 = (−1)

2+1
det ([b]) = −b

A22 = [a] ⇒ C22 = (−1)
2+2

det [a] = a

So

C =

(
d −b
−c a

)
and thus

A−1 =
1

det (A)
C =

1

ad− bc

(
d −b
−c a

)
Indeed(

a b
c d

)(
1

ad− bc

(
d −b
−c a

))
=

1

ad− bc

(
a b
c d

)(
d −b
−c a

)
=

1

ad− bc

(
ad− bc −ab+ ab
cd− dc −cb+ da

)
=

(
1 0
0 1

)
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3. Key Facts About Determinants

We’ve proved a number of things about determinants in this lecture. I’d thought it wise to collect here the
most salient points.

Fact 16.19. There are a number of ways to compute determinants:

• Via explicit formulas when n ≤ 3
• Using the recursive definition.
• Using the sum over permutations of column indices (useful theoretically, rarely practical though)
• Using cofactor expansions (useful when a particular row or column has lots of 0’s)
• Via row reduction to an upper triangular matrix

Theorem 16.20. Suppose A is an n× n matrix. Then the following statements are equivalent.

• det (A) 6= 0
• The columns of A are linearly independent.
• The rows of A are linearly independent.
• A has rank n.
• For each vector b ∈ Fn, there is a unique solution ot Ax = b.
• There are no non-trivial solutions of Ax = 0.
• A is an invertible matrix.
• Multiplication by A is an automorphism of Fn.

Determinants provide a nice way of circumventing ugly row reduction computations

Theorem 16.21. Solution of Ax = b is given by Crammers rule

xi =
det (Ai)

det (A)
.

Theorem 16.22. The inverse of an invertible matrix A is given by(
A−1

)
ij

=
(−1)

i+j

det (A)
det (Aji)

Finally, we have the following very useful (theoretically) facts.

Theorem 16.23. If A and B are n× n matrices, then

det (AB) = det (A) det (B) det (B)

Corollary 16.24. If A is an invertible n× n matrix, then

det
(
A−1

)
=

1

det (A)


