
LECTURE 15

Endomorphisms, Automorphisms, and Change of Basis

We now specialize to the situation where a vector space homomorphism (a.k.a, linear transformation) maps
a vector space to itself.

Definition 15.1. Let V be a vector space over a field F. A vector space homomorphism that maps V to itself
is called an endomorphism of V . The set of all endomorphisms of V will be denoted by L (V, V ). A vector
space isomorphism that maps V to itself is called an automorphism of V . The set of all automorphisms
of V will be denoted Aut (V ).

We have a natural notions of scalar multiplication and vector addition for elements of L (V, V ). If T in
L (V, V ) and λ ∈ F, then λ · T is defined as the mapping whose value at a point v ∈ V is λ · (T (v)). λ · T is
in fact another linear transformation in L(V, V ) since for all α, β ∈ F and all v, w ∈ V

(λ · T ) (αv + βw) = λ (Tαv + βw)

= λ (αT (v) + βT (w))

= α (λT (v) + β (λT (w))

α (λ · T ) (v) + β (λ · T ) (w)
If T, T ′ ∈ L (V, V ), then T + T ′ is the mapping whose value at v ∈ V is T (v) + T ′ (v). This is also another
linear transformation since for all α, β ∈ F and all v, w ∈ V

(T + T ′) (αv + βw) = T (αv + βw) + T (αv + βw)

= αT (v) + βT (w) + αT ′ (v) + βT ′ (w)

= α (T + T ′) (v) + β (T + T ′) (w)

In fact, it is (tedious but) not to hard to show that

Lemma 15.2. If V is a vector space over a field F, then L (V, V ) endowed with the scalar multiplication and
vector addition defined above is a vector space over F. Moreover, Aut (V ) is a subspace of L (V, V ).

It is also true (for exactly the same reasons as above) that if L (V,W ) is the set of vector space homo-
morphisms from one vector space V to another W , then L (V,W ) can be given the structure of a vector
space over the underlying field F. However, what makes L (V, V ) (and Aut (V )) more interesting is that
there is yet another kind of multiplication that can be defined on L (V, V ). Indeed, if T and T ′ are two
endomorphisms in L (V, V ), then so are their compositions

T ◦ T ′ : V → V , v 7−→ T (T ′ (v))

T ′ ◦ T : V → V , v 7−→ T ′ (T (v))

Remark 15.3. This multiplicative structure on L (V, V ) together with its natural (vector) addition gives
L (V, V ) the structure of a (non-commutative) ring.

Definition 15.4. A ring (with identity) is a set R endowed with two operations, “addition” and “multi-
plication” such that the following axioms are satisfied for all a, b, c, d ∈ R:

(1) a+ b = b+ a (commutativity of addition)
(2) (a+ b) + c = a+ (b+ c) (associativity of addition)
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(3) There is an element 0R ∈ R such that a+ 0 = a for all a ∈ R (additive identity)
(4) There is an element 1R such that 1R · a = a · 1R = a for all a ∈ R (multiplicative identity)
(5) For each a ∈ R there is an element −a ∈ R such that a+ (−a) = 0R (additive inverses)
(6) (ab) c = a (bc) (associativity of multiplication)
(7) a (b+ c) = (ab) + (bc) and (a+ b) c = (ac) + (bc) (distibutivity of multiplication over addition)

Note that we do not require ab = ba.

Here are some more examples of rings:

• Any field is also a ring (in fact, a commutative ring)
• The set Matn,n (F) of n× n matrices with entries in F.
• The set of differential operators (acting on functions) on R.

The set Aut (V ) of automorphisms of V has yet another special structure. Since the composition of two
isomorphism is another isomorphism, and because each isomorphism T : V → V has an inverse mapping
T−1 : V → V that is another element of Aut (V ), the set Aut (V ) qualifies as a group; as per the following
defintion.

Definition 15.5. A group is a set G with a notion of multiplication such that

(1) There exists an element 1G with the property that 1G · g = g · 1G for all g ∈ G.
(2) For each element g ∈ G, there exists an element g−1 ∈ G such gg−1 = 1G = g−1g.

Here are a few more examples of groups.

• The set R where the group multiplication is taken to coincide with the usual notion of addition in
R.
• A vector space V where the group multiplication is taken to coincide with vector addition in V .
• The set F× = {a ∈ F | a 6= 0F} where F is a field and the group multiplication is taken to coincide
with multiplication in F.

The examples above are examples of commutative groups (where gg′ = g′g for all g, g′ ∈ G). It turns out
that the group Aut (V ) is commutative only if V is one-dimensional. Here are some other non-commutative
groups.

• GL (n,F) the group of invertible n× n matrices with entries in a field F.
• O (n), the group of rotations in an n-dimensional Euclidean space.
• SO (3, 1), the Lorentz group of Minkowski space time.

Remark 15.6. I have introduced rings and groups not so much because they help us understand Linear
Algebra better; but rather because rings and groups are so prominent in modern mathematics and because
Linear Algebra is so vital to the study of rings and groups.

1. Changes of Basis

By now, I hope we all are cognizant of the distinction between Fn and a more general vector space V
over F of dimension n, and yet aware that so long as we have a basis B for V , we can reduce questions
about V to computations in Fn. One diffi culty that remains, however, is that there is not a unique choice
for B. Moreover, some choices of B may be good for some computations, but other choices of B may be
more convenient for other computations. The question will now address is how do connect results based on
different choices of bases.



1. CHANGES OF BASIS 3

Let me put this another way. Think of a basis of V as a way of acribing coordinates in Fn to elements in
V . More explicitly, given a vector v ∈ V and a basis B = {b1, . . . ,bn}, then there is a unique choice of
coeffi cients a1, . . . , an ∈ F such that

(1) v = a1b1 + a2b2 + · · ·+ anbn .

Collecting these coeffi cients together we can represent v ∈ V as the element

vB = [a1, . . . , an] ∈ Fn

and we refer to vB as the coordinate vector for v with respect to the basis B. Although a bit tautological,
another way of writing (1) is thus

(2) v = (vB)1 b1 + (vB)2 b2 + · · ·+ (vB)n bn.

A different choice of basis B′ = {b′1, . . . ,b′n} then amounts to choosing a different coordinate system for V .
What we need to figure out is how to carry out a change of coordinates directly in terms of the corresponding
coordinate vectors. That is to say, given that a vector v ∈ V has coordinates vB with respect to B, what
is its coordinate vector vB′ giving its coordinates with respect to the basis B′?

vB ∈ Fn
↗ ↓

V 3 v ↓?
↘ ↓

vB′ ∈ Fn

So let B = {v1, . . . , vn} and B′ = {u1, . . . , un} be two bases for V . Then since every vector in V can be
expressed as an expansion with respect to either the vectors in B or the vectors in B′ we have in particular,

vi = α
(i)
1 u1 + · · ·+ α(i)n un , i = 1, . . . n (3)

uj = β
(j)
1 v1 + · · ·+ β(j)n vn , j = 1, . . . , n (4)

for some coeffi cients α(i)j , β
(j)
i ∈ F.1

Now suppose a vector v ∈ V has coordinate vector vB = [a1, . . . , an] ∈ Fn with respect to the basis B.
Then, as in (2)

v = a1v1 + · · ·+ anvn

=

n∑
j=1

ajvj

=

n∑
j=1

aj

(
n∑
i=1

α
(j)
i ui

)
or, after reversing the order of summations,

(5) v =

n∑
i=1

(
n∑
i=1

ajα
(j)
i

)
ui

On the other hand, if vB/ = [b1, . . . , bn] is the coordinate vector of v with respect to the basis B′, we also
have

(6) v =

n∑
i=1

biui

1Note that
[
a
(i)
1 , . . . , α

(i)
n

]
is the coordinate vector of ui ∈ V with respect to the basis B and

[
β
(j)
1 , . . . , β

(j)
n

]
is the

coordinate vector of vj with respect to the basis B′.
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Comparing (5) and (6) (and using the fact that the vectors ui are linearly independent) we can conclude

(7) bi =

n∑
j=1

ajα
(j)
i , j = 1, 2, . . . , n

Let me now reformulate this result as a matrix transformation. Form a matrix CB→B′ by using using the

coordinate vector
[
α
(j)
1 , . . . , α

(j)
n

]
of vj with respect to the basis B′ as its ith column

(CB→B′)ij = α
(j)
i ≡ (vj)B′

then (7) reads

bi =

n∑
j=1

(CB→B′)ij aj

which, upon writing vB = [a1, . . . , an] and vB′ = [b1, . . . , bn] and as column vectors would be equivalent to

vB′ = CB→B′vB

Thus, multiplying the coordinate vector vB by the CB→B′ will yield the coordinate vector vB′ .

In summary,

Theorem 15.7. Let B = {v1, . . . , vn} and B′ = {u1, . . . , un} be two bases for a vector space V . Let
{v1,B′ , . . . ,vn,B′} be the coordinatization of the vectors {v1, . . . , vn} with respect to the basis B′. Form an
n× n matrix CB→B′ by using the coordinate vectors v1,B′ , . . . ,vn,B′ as columns

CB→B′ =

 | |
v1,B′ · · · vn,B′

| |


Then if w ∈ V has coordinate vector wB with respect to the basis B, it has coordinate vector

wB′ = CB→B′wB

with respect to the basis B′.

This explains how to go from coordinates w.r.t. B to coordinates w.r.t. B′. But how now to go from B′

to B? Well, if you know the coordinate vectors ui,B the same procedure works - just reversing the roles of
primed and unprimed basis vectors.

However, there is another alternative. Since the vectors {v1, . . . , vn} and {u1, , . . . , un} are linearly indepen-
dent, the rank of the matrix CB→B′ will be n. Thus, CB→B′ will be an invertible matrix and the matrix
C−1B→B′ can be used to transform coordinate vectors w.r.t. B′ to coordinate vectors w.r.t. B. That is to
say,

(8) CB′→B = (CB→B′)
−1

.

Remark 15.8. It might seem that the need to change coordinates is only a remote possibility. However,
soon we will be concerned with the solution of a variety of problems via the diagonalization of some matrix.
This diagonalization process will then be understood as a change of basis (from a natural basis to one where
the basis vectors are eigenvectors of a matrix).
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2. Calculating Change of Bases Matrices for Fn

Suppose B1 = {v1, . . . ,vn} and B2 = {u1, . . . ,un} are two bases for a finite-dimensional vector space V
over F. We can calculate the matrix CB1B2

that sends coordinate vectors with respect to B1 directly to
coordinate vectors with respect to B2 once we know the coordinate vector vi,B of each vector vi with respect
to the basis B2. But here’s the rub. To find vi,B′ , one has to solve a system of n equations in n unknowns

vi = x1u1 + · · ·xnun
and one has do this for all n basis vectors v1, . . . ,vn.

Luckily there’s an easier way. What we can do for Fn is exploit the existence of the standard basis
Bstd = {e1, e2, . . . , en}

= {[1, 0, . . . , 0] , [0, 1, 0, . . . , 0] , . . . , [0, . . . , 0, 1]}

Suppose vB is a coordinate vector for a vector v with respect to the (general) basis B = {v1, . . . ,vn}.
According to the result of the preceding section, if we can find the coordinate vector for each vi with
respect to the standard basis, then we can convert vB to its coordinate vector with respect to Bstd.. But
in fact, each basis vector vi is an element of Fn, and so an ordered list of elements of F and so

vj =
[
(vj)1 , . . . , (vj)n

]
= (vj)1 e1 + · · ·+ (vj)n en ⇒ (vj,Bstd

)i = (vj)i

Thus,
(CB→Bstd

)ij = (vj)i
Put another way, the matrix CB→Bstd

that maps coordinate vectors with respect to the general basis B to
the corresponding coordinate vectors with respect to the standard basis can be formed by simply using the
vectors v1, . . . ,vn as the columns of CB→Bsstd

:

CB→Bstd
=

 | |
v1 · · · vn
| |


What about the matrix CBstd→B that converts standard coordinate vectors to coordinate vectors with
respect to the basis B. Well that will be, in view of (8)

CBstd→B = (CB→Bstd
)
−1
=

 | |
v1 · · · vn
| |

−1

Okay, now we can convert standard vectors to coordinate vectors with respect to a more general basis B.
What about going from coordinate vectors with respect to one general basis B = {v1, . . . ,vn} to coordinate
vectors with respect to another general basis B′ = {u1, . . . ,un}?

Well, we’ll do this in two steps. First, we re-express the coordinates vB of a vector with respect to B to
its standard coordinates using CB→Bstd

and then we can go from the standard coordinates to coordinates
with respect to B′ using CBstd→B′ = (CB′→Bstd

)
−1. Thus,

CB→B′ = (CB′→Bstd
)
−1
CB→Bstd

=

 | |
u1 · · · un
| |

−1 | |
v1 · · · vn
| |




