
LECTURE 12

Homomorphisms and Isomorphisms

While I have discarded some of Curtis’s terminology (e.g. “linear manifold”) because it served mainly to
reference something (differential geometry) that is esoteric to the present course; I now find myself wanting
to break from the text in the other direction; wanting to discard the nomenclature “linear transformation”
in favor of a notion of wider applicability.

The basic idea of a homomorphism is that it is a mapping that keeps you in the same category of objects
and is compatible with the basic structural operations on such objects. For example, a ring homomorphism
is a mapping between rings that is compatible with the ring properties of the domain and codomain, a
group homomorphism is a mapping between groups that is compatible with the group multiplication in
the domain and codomain. In this course, we have defined linear transformations as mappings that are
compatible with the vector space properties of the domain and codomain (specifically, mappings that are
compatible with scalar multiplication and vector addition). For this reason, allow me now to shift into a
more modern parlance and refer to linear transformations as vector space homomorphisms.

Let T : V → W be a vector space homomorphism. Let me recall a bit of Lecture 10. Attached to T we
have two important subspaces:

kerT = {v ∈ V | T (v) = 0W } is a subspace of V

range (T ) = {w ∈W | w = T (v) for some v ∈ V } is a subspace of W

These are important because

ker (T ) = {0V } ⇒ T is injective (one-to-one)

range (T ) = W ⇒ T is surjective (onto)

and that if both these conditions hold T is bijective, and so has an inverse T−1 : W → V which is also a
vector space homomorphism.

Definition 12.1. If T : V →W is a vector space homomorphism such that ker (T ) = {0V } and range (T ) =
W , then we say T is a vector space isomorphism.

Lemma 12.2. Suppose T : V → W is a vector space isomorphism and {v1, . . . , vn} is a basis for V . Then
{T (v1) , . . . , T (vn)} is a basis for W .

Proof. Let B = {v1, . . . , vm} be a basis for V . I claim {T (v1, ) , . . . , T (vm)} is a basis for W . First of all,
T = span (T (v1) , . . . , T (vn)) because

W = Range (T ) = {T (v) | v ∈ V }
= {T (a1v1 + · · ·+ amvm) | a1, . . . , am ∈ F}
= {a1T (v1) + · · ·+ amT (vm) | a1, . . . , am ∈ F}
= span (T (v1) , . . . T (vn))
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Moreover, the vectors {T (v1) , . . . , T (vm)} are linearly independent since

0W = a1T (v1) + · · ·+ amT (vm)

= T (a1v1 + · · ·+ amvm)

⇒ a1v1 + · · ·+ amvm ∈ ker (T )

⇒ a1v1 + · · ·+ amvm = 0V

⇒ a1 = 0F, . . . , am = 0F

⇒ T (v1) , . . . , T (vm) are linearly independent.

We have thus shown that {T (v1) , . . . , T (vn)} is a set of linearly independent generators of W ; hence
{T (v1) , . . . , T (vn)} is a basis for W . �

Corollary 12.3. If T : V− → W is a vector space isomorphism between two finitely generated vector
spaces, then dim (V ) = dim (W ).

Proof. Since the number of vectors in this basis for W is equal to the number of vectors in basis for V , the
dimensions of V and W must also be the same. �

Recall that once we adopt a basis B = {v1, . . . , vm} for a vector space V we have the following coordinati-
zation isomorphism

iB : V → Fm : v = a1v1 + · · ·+ amvm 7−→ [a1, . . . , am] ∈ Fm

In the preceding lecture we used such isomorphims to attach to a homomorphism T : V →W between two
vector spaces a particular matrix AT,B,B′ . Here’s how that worked. Along with the basis B for V , chooose
a basis B′ = {w1, . . . , wn} for W . The corresponding maps iB and iB′ will allow us to represent vectors in
our abstract vector spaces V and W as concrete, calculable, vectors in, respectively, Fm and Fn. Let me
write

vB = iB (v) = “coordinates of v” in Fm

wB′ = iB′ (w) = ”coordinates of w” in Fn

We can now attach to T : V →W the n×m matrix AT,B,B′ defined by

AT,B,B′ =

 ↑ ↑
iB′ (T (v1)) · · · iB′ (T (vm))

↓ ↓


where we are to express each iB′ (T (vi)) ∈ Fn as a column vector.

Theorem 12.4. Retain the setup of the preceding paragraph.

iB′ (T (v)) = AT,B,B′vB for all v ∈ V .

In other words the coordinates of the image T (v) of v, can be obtained directly from the coordinates vB of
v by multiplying vB by the matrix AT,B,B′ .

Proof. Exploiting the basis B we can always write

v = a1v1 + · · ·+ amvm

(Note that this means vB = [a1, . . . , am].) Applying T we get

T (v) = T (a1v1 + · · ·+ amvm)

= a1T (v1) + · · ·+ anT (vm) since T is a linear transformation
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Now apply (the linear transformation) iB′ to both sidesw

iB′ (T (v)) = iB′ (a1T (v1) + · · ·+ amT (vm))

= a1iB′ (T (v1)) + · · ·+ amiB′ (T (vm))

= a1
(
1st column of AT,B,B′

)
+ · · ·+ am

(
mth column of AT,B,B′

)
=

 ↑ ↑
iB′ (T (v1)) · · · iB′ (T (vm))

↓ ↓


 a1

...
am


= AT,B,B′vB

�

Corollary 12.5. Let T : V → W be a linear transformation between two finitely generated vector spaces,
let B and B′ be bases for, respectively, V and W , and let AT,B,B′ be the corresponding matrix (as constructed
above). Then

(i) iB′ (Range (T )) = ColSp (AT,B,B′)
(ii) iB (Ker (T )) = NullSp (AT,B.B′)

Proof. (i) The first statement is merely an observation from the proof of the preceding Theorem. For any
v ∈ V we could write v = a1v1 + · · · amvm, v ∈ B, and then

iB′ (T (v)) = a1
(
1st column of AT,B,B′

)
+ · · ·+ am

(
mth column of AT,B,B′

)
Letting v run over V , which means letting the coefficients a1 . . . , am run over the underlying field, we see
that

{iB′ (T (v)) | v ∈ V } = span (columns of AT,B′B′)

or, equivalently

iB′ (Range (T )) = ColSp (AT,B,B′)

�

(ii) We have

iB (Ker (T )) = {iB (v) | v ∈ Ker (T )}(12.1)

= {iB (v) | T (v) = 0W } (*)

Since iB′ is an isomorphism

T (v) = 0W ⇐⇒ iB′ (T (v)) = iB′ (0W ) = 0Fn

But then, by the preceding theorem,

iB′ (T (v)) = AT,B,B′vB = 0Fn

Thus,

{iB (v) | T (v) = 0W } = {v ∈ Fm | AT,B,B′v = 0Fn} = NullSp (AT,B,B′)

and so (ii) follows. �

Theorem 12.6. Let T : V → W be a vector space homomorphism between two finitely generated vector
spaces. Then

dim (V ) = dim (range (T )) + dim (ker (T ))

Proof. In this proof, we simply continue to exploit the connection between linear transformations and their
representative matrices. We have

dim (V ) = # basis vectors for V

= # columns of AT,B,B′
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On the other hand, since iB′ is an isomorphism, by (i) of Corollary 12.4,

dim (Range (T )) = dim (ColSp (AT,B,B′))

= # pivots in any row echelon form of AT,B,B′

On yet another hand, since iB is an isomorphism

dim (Ker (T )) = dim
(
NullSp

(
A′T,B,B

))
= dim ( solution set of AT,B,B′x = 0)

= # free parameters in solution set AT,B,B′x = 0

= # columns of a row echelon form of AT,B,B′ that lack pivots

Thus, if ÃT,B,B′ is any row echelon form of AT,B,B′ , then

dim (V ) = # columns of AT,B,B′

= # columns of ÃT,B,B′

= #
{

columns of ÃT,B,B′with pivots
}

+ #
{

columns of ÃT,B,B′withot pivots
}

= dim (Range (T )) + dim (Ker (T ))

�

1. Calculating T−1

It should be no surprise that in order to calculate the inverse of a vector space isomorphism T : V → W ,
we will need to calculate the inverse of an associated matrix TB,B′ .

However, we have yet to discuss matrix inversion. Let’s take care of that topic straight away.

1.1. Calculating Matrix Inverses.

1.1.1. Elementary Row Operations and Matrix Multiplication.

Lemma 12.7. Each elementary row operation on an n×m matrix M is implementable by a certain matrix
multiplication by a n× n matrix.

Proof.

(i) The operation where you interchange the i and jth row of M can be reproduced by multiplying M from
the left by a matrix Ei→j which is formed by interchanging the ith and jth row of the n×n identity matrix.

(ii) The operation of multiplying the ith row of M by a scalar λ can be reproduced by multiplying the
matrix M by a matrix Eλ which is formed by multiplying the ith row of the n× n identity matrix by λ.

(iii) The operation of adding λ times the jth row of M to the ith row of M can be reproduced by multiplying
the matrix M by a matrix Eι+λj formed by adding λ times the jth row of the n× n identity matrix to the
ith row of that identity matrix.

1.1.2. An Algorithm to Calculate A−1. Suppose A is row equivalent to the identity matrix. Let
R1,R2, . . . ,Rk be a sequence of elementary row operations that systematically transform A to the identity
matrix:

A→ R1 (A)→ R2 (R1 (A))→ · · · → Rk (Rk−1 (· · · (R2R1 (A)))) = In

Each of these row operations can also be implemented by matrix multiplications as in the Lemma above.
Thus

A→ ER1
A→ ER2

ER1
A→ · · · → ERk

ERk−1
· · · ER2

ER1
A = In
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Thus,
ERk
ERk−1

· · · ER2
ER1

= A−1

Equivalently, we could write
A−1 = ERk

ERk−1
· · · ER2

ER1
In

or
A−1 = Rk (Rk−1 (· · · (R2R1 (In))))

In other words, the same sequence of elementary row operations that converts A to the identity matrix In
will convert In to the inverse of A.

So here’s what you do:

(i) Form an augmented matrix [A|In].
(ii) Apply elementary row operations that transform the left hand side to reduced row echelon form.

[A|In] → [A′|B]

(iii) Suppose that reduced row echelon form A′ of A coincides with the identity matrix In, then the
matrix B on the right will have to be A−1. On the other hand, if A′ 6= In, then that will mean
that the matrix A is not invertible. (Note that if A′ 6= In, then we’ll have to have rank (A) < n,
which will mean that the map TA : Fn → Fn corresponding to matrix multiplication by A will not
be surjective, and so not invertible.)

Example 12.8. Compute the inverse of A =

 1 0 1
−1 1 0
0 2 1


•

[A|I3] =

 1 0 1
−1 1 0
0 2 1

1 0 0
0 1 0
0 0 1


R2 → R2 +R1−−−−−−−−−−−−−−→

 1 0 1
0 1 1
0 2 1

1 0 0
1 1 0
0 0 1


R3 → R3 − 2R2−−−−−−−−−−−−−−−→

 1 0 1
0 1 1
0 0 −1

1 0 0
1 1 0
−2 −2 1


R3 → −R3−−−−−−−−−−−→

 1 0 1
0 1 1
0 0 1

1 0 0
1 1 1
2 2 −1


R1 → R1 −R3−−−−−−−−−−−−−−→

 1 0 0
0 1 1
0 0 1

−1 −2 1
1 1 0
2 2 −1


R2 → R2 −R3−−−−−−−−−−−−−−→

 1 0 0
0 1 0
0 0 1

−1 0 −2
−1 −1 2
2 2 −1


Therefore,

A−1 =:

 −1 −2 1
−1 −1 1
2 2 −1


Indeed,  1 0 1

−1 1 0
0 2 1

 −1 0 −2
−1 −1 2
2 2 −1

 =

 1 0 0
0 1 0
0 0 1


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1.1.3. Inverting a Vector Space Isomorphism.

Theorem 12.9. Suppose V is a vector space with basis B, W is a vector space with basis B′ and T : V −→W
is a vector space isomorphism from V to W . Then the inverse isomorphism T−1 : W −→ V is given by

T−1 = i−1B ◦ TT−1

B,B′
◦ iB′

where iB : V → Fn and iB′ : W → Fn are the coordinazation maps corresponding to the bases B and B′,
and TT−1

B,B′
is the linear transformation from Fn to Fn corresponding to matrix multiplication by the matrix

inverse of TB,B′ .

Remark 12.10. This is just a formal result that exhibits explicitly the inverse linear transformation cor-
responding to a vector space isomorphism between two abstract vector spaces. For calculations, it much
better to simply relate the coordinate vectors of V and W via the matrix TB,B′ and its inverse T−1B′B′ .


