LECTURE 9

Hyperplanes

Let V be a finitely generated vector space over a field F. Today we will focus our attention on a special
class of subsets of V. These subsets will not in general be subspaces, but they arise quite naturally in linear
algebra and have a lot of nice properties.

DEFINITION 9.1. Let V' be a vector space over a field F, let S be a subspace of V and let p € V. Let
Mps:={p+s|seS}
We shall refer to such a subset as a linear submanifold of V. The subspace S is called the directing

subspace of Mp, 5. The dimension of My, s is defined as the dimension of S.

REMARK 9.2. The notion of a manifold is actually more germane to differential geometry than linear algebra,
in the geometric setting the notion of a linear manifold is akin to the notion of a linear function in Calculus
- it’s so simple that it’s not worth discussing except as a simplifying limit.

However, because we are not discussing differential geometry in this course, I don’t see much point
in mentioning manifolds. What I think would be more helpful will be to view sets of the form My s as
generalizations of lines and planes in R3. Indeed, you can generate a line in R? by starting at a particular
point p € R and then heading off an arbitrary distance d (forwards and backwards) along a particular
direction v: that is to say

line = set of the form {p+tv|p,v€R3 , teR}

Since the vectors {tv | t € R} constitute the span of v, such a line is a linear submanifold of R? as defined
defined above. Similarly, a plane in R? is formed by starting at a particular point and then heading of an
arbitary distance in two possible directrions; i.e. a subset of R? of the form
plane = {p+su+tv|s,t€R}
{p+s|sé€span(u,v)}
To underscore this simple geometric picture, I shall henceforth refer to linear submanifolds of a vector
space V as a hyperplane in V.
DEFINITION 9.3.

NOTATION 9.4 (common but abusive notation). Let V' be a vector space. If S is a subspace of a vector
space V', and b is a point of V' we shall write

b+S

for the corresponding hyperplane in V. (What’s abusive about this is that you can’t really add a subspace
to a vector; on the other hand, if you interpret this expression as adding every vector in S to b then it does
kind of make sense.)

I note also that we have already run into hyperplanes in two particular contexts. In Lecture 6, I defined
quotient spaces V/S, S being some subspace of a vector space V', as the collection of sets of the form pg+ S
(= [polg in the notation of Lecture 6).

In Theorem 7.7 of Lecture 7, we saw hyperplanes arise as the solution sets of linear systems
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THEOREM 7.7. (rephrased) Suppose Ax = b is an n x m linear system. Then the solution set of this linear
system can be expressed as

po+S={po+s|seS}
where pg is any particular solution of Ax =b and S is the solution set of Ax = 0.1

The first thing to point out about hyperplanes is that in general they are not subspaces. Here is a simple
counter-example. Let V = R?, pg = [1,0] and let S = span ([0, 1)]. Then

po+5={[LyllyeR}
which cannot be a subspace of R? since it does not contain the zero vector in R2.

THEOREM 9.5. Let b+ S be a hyperplane in a vector space V. Then
S={veV|v=r—-q , r,qeb+5}

Proof. Let B
S={veV|v=r—-q , r,qeb+ S}
Suppose v € S. Then there exists r = b +s; and q =b + s, in b+ S such that
v=r—q=(b+s1)—(b+s2)=s1—-8€8

and so every element v € S is also a vector of S.

Suppose on the other hand that s € S, then we can always write
s=s+b—-b=(b+s)—(b+0)

which displays s as an element of S. We conclude S = S and thus prove the theorem. (]

Theorem 9.2 told us how to view the solution set of homogeneous n x m linear system is subspace of F™.
The following lemma provides a converse to this result.

LEMMA 9.6. Let S be an r-dimensional subspace of a vector space V' of dimension m. Then there exists a
set of m —r homogeneous linear equations in m unknowns whose solution set is exactly S.

Let {b1,...,b.} be a basis for S. Consider the solution space S* of

bl-.%‘ = 0
bQ'l’ = 0
b-x = 0

We first note that S* is not likely to coincide with S, simply because for example, by € S but by - by # 0.
On the other hand, since the vectors b; are all linearly independent, it follows that the coefficient matrix
A for this linear system has rank r (since the row space of A will be span of the r linearly independent
vectors by, ...,b,). So the solution space S* of Az = 0 will be of dimension m — r. Let {c1,...,cm_r} be
the basis for the S* and consider the system

cirrxr = 0
(*)
Cm_r-x = 0

Let S** denote the solution set of (*). Clearly, each b; will be a solution of this system, and thus so will
any linear combination of the vectors b;, and thus, the entire subspace S lie in the solution set of (*). On
the other hand, Since the vectors ¢y, ..., ¢p—, are linearly independent, it is clear that the rank of this

LThat the solution set of a homogeneous n X m linear system Ax = 0 is actually a subspace of F'™ is the content of
Theorem 9.2.
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linear system is m — r and so solution set of dimension m — (m —r) = r. But we’ve seen that if a subspace
has same dimension as the vector space containing it, the subspace must be the whole vector space. Since
S C §** and dim (S) = dim (S**) we conclude that S coincides with the solution set S** of (*). O

EXAMPLE 9.7. Find a homgeneous linear system whose solution set coincides with the span of [1,0, 1] and
[1,1,0].
o We first find a basis for the solution set of
0 = [1,0,1]- 2 =21+ x5
0 = [1,1,0]-z =21+ 22
The augmented matrix for this system is
1 0 1]0 N 1 0 110
1 1 00 01 —-11]0

and so the general solution will be

ry = —T3
T2 = I3
—XI3 -1
X = XT3 = I3 1
To 1
Thus, the solution space has basis ¢; = [—1,1,1]. The desired homogeneous linear system will be
[-1,1,1]-2=0

THEOREM 9.8. A necessary and sufficient condition for a subset M of vectors to form a hyperplane in F™
of dimension r is that M be the set of solutions of a system of m — r equations in m unknowns whose
coefficient matrix has rank r.

Proof. How, a solution set of a linear system constitutes a hyperplane was explained in at the start of this
lecture. To see that every hyperplane b+ .S corresponds to a linear system, we just observe that by Lemma
10.5 the directing subspace S can be viewed as the solution set an (m — r) X m linear system Ax = 0. Let

b= Ab
Then any b + s vector in b 4+ .5 will satisfy
A(b+s)=Ab+0=b
This shows that the solution of
(**) Ay=b
will contain b + 5. On the other hand, by construction y = b is a solution of (**) and by Theorem 7.7,
any other solution of Ay = b will be of the form
b+ some solution of Ax =0
and so any solution y of (**) will be of the form ,
y=b+s , se8§
Therefore b + .S will coincide with the solutions of (**). O

Finally, let me describe an algorithm by which one can identify a linear system whose solution set is a given
hyperplane.

We have see above that if we had a hyperplane in R" which is also a subspace S of R™, then we could
construct a corresponding equation set as follows:
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e find a basis {vy,...,vi} for §

e find a basis {uy,...,us} for the solution set of the linear system
vi-x = 0
vorx = 0
vi-x = 0

e The equations that cut out the subspace S will

u-x = 0
u-x = 0
Uy X = 0

Now suppose we have a hyperplane in R™ of the form
H=po+S5S={po+s|seS}
S being some subspace of R™. Suppose also that we have followed the algorithm above and found ¢ vectors
ui,...,uy such that
seS <= u-s=0
Then each vector in H will satisfy

u;-(po+s)=u;-pot+u;-s=u;-pp+0=u;-po , oi=1,...¢
And so the linear equations whose solution set is the hyperplane H = pg + S will be
u;-X = Ui-Po
uz-X = U2-Po

u,-X = Uz-Po



