
LECTURE 8

Homogeneous Linear Systems

We now return to some more theoretical aspects linear systems and their corresponding matrices.

We first note that there is a natural 1:1 correspondence between homogeneous n ×m linear systems and
n×m matrices. For any n×m matrix

(1) A =

 a11 · · · a1m
...

. . .
...

an1 · · · anm


is interpretable as the coefficient matrix of n×m homogeneous linear system

α11x1 + · · ·+ a1mxm = 0

... (2)

an1x1 + · · ·+ anmxm = 0

In this lecture we’ll study the solution spaces of n×m homogeneous linear systems and relate some of their
properties to properties of their coefficient matrices.

Although we have yet to define matrix multiplication or inner products, we can simplify our notation
immensely if we simply write

Ax = 0

for typical homogeneous linear system, and if we wish to reference a particular equation in this system, say

(3) ai1x1 + · · ·+ aimxm = 0 ,

we may write

(4) ri · x = 0

as right hand side of (3) does in fact coincide with the dot product of the variable vector x = [x1, . . . , xm]
with the ith row of the coefficient matrix. As before, we will also use the notation cj for the jth column
vector of a matrix.

As an initial remark, let me point out that a homogeneous linear system such as (2) always has a solution.
For if we simply set each xi, 1 ≤ i ≤ m, equal to 0F, then all the equations in (2) will be satisfied. For
this reason, instead of asking if solutions exist, we shall be asking if solutions other than the trivial solution
x = 0Fm exist. The following lemma follows easily from Theorem 7.2.

Proposition 8.1. A homogeneous linear system with coefficient matrix A has non-trivial solutions if and
only if the columns of A are linearly dependent.

Proof. By theorem 7.2 (i), we know that the linear system Ax = 0 will have a solution if and only if the
right hand side 0 lies in the span of the columns of A. If 0 ∈ span (c1, . . . , cm), then there are field elements
λ1, . . . , λm such that

0 = λ1c1 + · · ·+ λmcm

If the column vectors c1, . . . , cm are linear independent, the only way this equation could be satisfied is by
taking all the λi = 0. So if we are to have non-trivial solutions (solutions where some of the variables xi
are non-zero), the columns of A must be linearly dependent. �
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Theorem 8.2. The solutions of an n×m homogeneous linear system form a subspace of Fm.

Proof. It will suffice to show that any linear combination of two solutions of Ax = 0 is another solution.
Let x,y ∈ Fm be two solutions of Ax = 0. This means that, in the notation of (3), that

ri · x = 0 , i = 1, . . . , n (5)

ri · y = 0 , i = 1, . . . , n (6)

Multiplying each equation in (5) by some α ∈ F and each equation in (6) by β, we get

0 = α (ri · x) = ri · (αx) , i = 1, . . . , n

0 = β (ri · y) = ri · (βy) , i = 1, . . . , n

and then adding these equations pairwise, we get

0 = ri · (αx + βy) , i = 1, . . . , n

which tells us that αx + βy is also a solution of the original homogeneous linear system. �

Consider an n ×m linear system Ax = 0. By Theorem 5.3 we can always choose a subset of the columns
{c1, . . . , cm} that provides a basis for the column space. In fact, by relabeling the variables xi in the original
linear system, we can always arrange matters so that the first, say r, column vectors of A form a basis
for the column space. In this situation, all the columns past the rth column can be expressed as linear
combinations of the first r columns. That is to say, for each i between r + 1 and m, there will be field

elements λ
(i)
1 , . . . , λ(i)r such that

ci = λ
(i)
1 c1 + λ

(i)
2 c2 + · · ·+ λ(i)r cr , r + 1 ≤ i ≤ m

and thus we will have the following m− r dependence relations

(7) λ
(i)
1 c1 + λ

(i)
2 c2 + · · ·+ λ(i)r cr − ci = 0 , r + 1 ≤ i ≤ m .

Theorem 8.3. Let Ax = 0 be a n × m homogeneous linear system set up in such a way that the first r
column vectors of the coefficient matrix A form a basis for the column space of A and with the dependence
relations (7). Then the vectors

ui =
[
λ
(i)
1 , λ

(i)
2 , . . . , λ(i)r , 0, . . . , 0,−1, 0, . . . , 0

]
, r + 1 < i ≤ m

with the component −1 occurring in the ith slot of the vector on the right, will provide a basis for the solution
space of Ax = 0.

Proof. Examining say, the jth component the ith vector equation in (7) component by component, one
observes that it is equivalent to

rj · ui = 0

Since such a relation will hold for each of the row vectors A, we conclude that each of the vectors ui will
be solutions of the original homogeneous linear system. Next we note that the m− r vectors ur+1, . . . ,um

are linearly independent. This is because each of the vectors will have exactly one non-zero component in
its last n − r entries (the −1 that occurs in the ith slot of ui). But then the last n − r entries of a linear
combination of the these vectors will look like

αr+1ur+1 + · · ·+ αmum = [∗, . . . , ∗,−αr+1,−αr+2, . . . ,−αm]

So such a linear combination can not sum to the zero vector without setting each coefficient αr+1, . . . , αm

separately equal to 0. We conclude that the vectors ur+1, . . . ,um will be linearly independent.

Finally, we shall show that these vector generate the entire solution space. Let x be another solution of
Ax = 0 and suppose xr+1, . . . , xm are the last m− r components of x. Consider the linear combination

x +

m∑
ii=r+1

xiui
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Noting that the way we have set things up each of last m − r components of x will cancels with the
corresponding component of one (and only one) of the xiui. So we can write

x +

m∑
ii=r+1

xiui = [ξ1, . . . , ξr, 0, . . . , 0]

On the other hand, xince x +
∑m

ii=r+1 xiui is a sum of solutions of the homogeneous linear system, it too
will be a solution. Therefore,

ξ1c1 + ξ2c2 + · · ·+ ξrcr + 0 · cr+1 + · · ·+ 0 · cm = 0

or

ξ1c1 + ξ2c2 + · · ·+ ξrcr = 0 .

But the first r column vectors of A are linearly independent - hence, each ξi = 0. And this turn means that

x +

m∑
ii=r+1

xiui = [0, , . . . , 0]

and so we can express x as a linear combination of the vectors ui, r + 1 ≤ i ≤ m. �

Corollary 8.4. The dimension of the solution space of an n × m homogeneous linear system is m − r
where m is the (column) rank of the corresponding coefficient matrix.

Proof. The preceding theorem produces a basis {ur+1, . . . ,um} for the solution space of n×m homogeneus
linear system where the r is the (column) rank of the coefficient matrix. �

Thus far, we have used the terminology column rank of a matrix A to mean the dimension of the subspace
of Fn generated by the column vectors of A. Similarly, we can consider the row rank of a matrix to be the
dimension of the subspace of Fm generated by the row vectors of A.

Theorem 8.5. Let A be an n×m matrix, then the column rank of A equals its row rank.

Proof. Recall that elementary row operations on a coefficient matrix do not change the solution set of
Ax = 0. By the preceding corollary, then it follows that if A′ is a matrix obtained from A by elementary
row operations, then the dimension of its column space has to coincide with the dimension of the column
space of A. For this reason, we can without loss of generality reduce to the situation where A is a matrix
in reduced row echelon form. But when a matrix is in reduced row echelon form it is clear that the linearly
independent columns are precisely the columns that contain pivots, and these in turn correspond to non-zero
rows of a (reduced) row echelon form. Thus,

# pivots = # linearly independent row vectors = dim RowSp (A) ≡ RowRank (A)

= # linearly independent colum vectors = dimColSp (A) ≡ ColumnRank (A)

�

1. Connection with Lecture 8

In th preceding lecture we described a methodical approach to solving a general n×m linear system Ax = b.
The crux of this method was to row reduce the augmented matrix [A|b] to it reduced row echelon form
[A′|b′], and the regard the components xi corresponding to the columns of A′ that do not contain pivots
as free parameters, and the components of xi that correspond to columns of A′ that contain pivots as the
variables that can be expressed in terms of the free parameters via an equation corresponding to a non-zero
row of [A′|b′]. If the matrix A′ has r pivots, then there would be m − r columns without pivots and so
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m− r free parameters in the solution. Let s1, . . . , sm−r be these free parameters. Then each component of
a solution could be expressed in terms of the free parameters s1, . . . , sm−r

xi (s1, . . . , sm−r) if ith column of A′ contains a pivot
↗

xi ←→ ith column of A
↘

sj if ith column of A′ is the jth column without a pivot

Via this interpretation of the columns of A′, we could write down the general solution in terms on free
parameters s1, . . . , sm−r

x = b′ + s1b1 + · · ·+ sm−rbm−r

Here b′ is, on the one hand, the vector in the last column of the augmented matrix in reduced row echeleon
form, and on the other hand the solution of Ax = b obtained by setting all the free parameters equal to
0F. The vectors b1, . . . ,bm−r are all solutions of the corresponding homogeneous problem. This can be
seen by noting that if we had started with b = 0 the same elementary row opersations that sent [A|b] to
[A′|b′] would send [A|0] to [A′|0]; and so, following the method above, we would have the general solution
of Ax = 0 presented in the form

x = 0+s1b1 + · · ·+ sm−rbm−r

which shows every solution of Ax = 0 as lying in the span of the vectors b1, . . . ,bm−r.

All I wanted to point out in this section is the connection between the vectors b1, . . . ,bm−r of our concrete
solution methodology and the vectors ur+1, . . . ,um of Theorem 9.3. Recall that the vectors ui were formed
by first of all reordering and relabeling the variables so that the first r columns of the coefficient matrix
A provided a basis for the column space. Then the last m − r columns could be expressed as linear
combinations of the first r columns, which led to equations like

ci = λ
(i)
1 c1 + · · ·+ λ(i)r cr , i = r + 1, . . . ,m

We then used the coefficients λ
(i)
j to form the vectors

ui =
[
λ
(i)
1 , λ

(i)
2 , . . . , λ(i)r , 0, . . . ,−1, . . . , 0

]
, i = 1 + r, . . . ,m

that turned out to be a basis for the solution space of Ax = 0.

To see the connection between the vectors b1, . . . ,bm−r and the vectors ur+1, . . . ,um, suppose construct
the vectors ui starting with a linear system such that [A|0] is already in reduced row echelon form. By
reordering and relabeling the variables we can arrange so that the pivot columns all proceed the columns
without pivots with [A|0] still in reduced row echelon form. Then if A has r pivots, [A|0] will have the
form

1 0 · · · 0 a1,r+1 · · · a1,m 0

0 1 0
... a2,r+1 · · · a2,m 0

0 0
. . .

...
. . .

...
...

... 1 ar,r+1 · · · ar,m 0

... 0 · · · 0 0

...
...

. . .
...

...
0 0 · · · 0 0

For such an [A|0] the vectors b1, . . . ,br will be

b1 = [−a1,r+1,−a2,r+1, . . . ,−ar,r+1, 1, 0, . . . , 0]

b2 = [−a1,r+2,,−a2,r+2, . . . ,−ar,r+2, 0, 1, . . . , 0]

...

bm−r = [−a1,m,−a2,m, . . . ,−ar,m, 0, · · · , 0, 1]
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These vectors are just the vectors ur+1, . . . ,um multiplied by −1. Indeed, each of the last m − r columns
of A (in the above reduced row echelon form) can be express as a linear combintion of the first r columns
(indeed the first r columns of A are effectively a standard basis for the column space). For all i = r+1, . . . ,m
we’ll have

ci = a1,ic1 + a2,ic2 + · · ·+ ar,icr

⇒ ui = [a1,i · · · , ar,i, 0, . . . , 0,−1, 0, . . . , 0] = −bi−r

Thus, we fill the gap in the conclustion of Lecture 8 (that the vectors b1, . . . ,bm−r actually provide a basis
for the solution space of Ax = 0).


