
LECTURE 7

Solving Linear Systems

The basic method for solving linear systems that taught in Math 3013 is based on the notion of a matrix
in reduced row echelon form.

Let A be an n ×m matrix with entries in a field F. Recall that the first (reading left to right) entry in
a row of A that is not equal to 0F is called the pivot of the corresponding row, and that a matrix in row
echelon form has the property that pivots in successive rows always occur off to the right of the pivots in
preceding rows. For a matrix to be in reduced row echelon form, we require not only that is in row echelon
form, but also that each pivot is equal to 1F, and that above and below each pivot only 0F’s appear.

We note that it is always possible to convert the pivot λ (where of couse λ 6= 0F) of a row to 1F by simply
scalar multiplying a row by λ−1 (a standard elementary operation). We further note that once the matrix
is in row echelon form all the matrix entries below a pivot are already 0F’s. Once the pivots have all been
converted to 1F’s, a non-zero entry, say λ, lying in row i above a pivot in row j, can be cleared out by
replacing row i with its sum with −λ times row j. Note that this operation will not affect any entries
in row i that appear to the left of the pivot in row j. Thus, by employing elementary operations we can
systematically convert a matrix in row echelon form to a matrix in reduced row echelon form.

Remark 7.1. Suppose A is an n × n matrix in reduced row echelon form and moreover has no non-zero
rows. Then A is the n× n identity matrix. Indeed, each row of A must have a pivot which must equal 1F
since A is in reduced row echelon form. So A has exactly n pivots. On the other hand, since A is also in
row echelon form, its pivots must live in different columns. Since there are exactly n pivots and n columns,
we must have exactly one pivot in each column and row and that pivot must be equal to 1F. Thus, A must
be of the form

A =


1F 0F · · · · · · 0F
0F 1F 0F
...

. . .
...

0F 1F 0F
0F 0F 1F


Theorem 7.2. The reduced row echelon form of an n×m matrix A is unique.

Proof.

We will use a proof by induction, where we induce on the number m of columns of A. For m = 1, the result
is clear since the only n×m matrix in reduced row echelon form is the n× 1 matrix with 1F in the first slot
and 0F’s everywhere else.

Now as an induction hypothesis suppose the statement is true for any matrix with m− 1 columns. Let B
and C be two matrices in reduced row echelon form obtained from A by elementary row operations. Let
A′, B′ and C′ be the n × (m− 1) matrices obtained from, respectively, A, B, C by deleting their last
columns. Since the elementary row operations operate column and by column, as does the criteria for being
in reduced row echelon form, it is clear that B′ and C’ will be matrices in reduced echelon form obtained
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from A′ by elementary row operations. By the induction hypothesis, then B′ = C′.

B =

 B′
b1m

...
bnm

 , C =

 C′
c1m

...
cnm


Let’s dispense with an easy case write away. Suppose the last columns of B and C contain a pivot (if
one does so does the other – for, otherwise, dimRowSp (B) would not equal dimRowSp (C), which would
contract the hypothesis that both B and C are row equivalent to A). Since the submatrices B′ = C′ are
already in (reduced) row echelon form, there is only one place to put a pivot in the last column of these
matrices – at the end of the row that follows the last non-zero of B′ = C′. Since B and C are to be in
reduced row echelon form, that pivot has to be equal to 1F. Hence, in this situation, there is is only one
way to add a column to B′ = C′ to get a matrix in reduced row echelon form, and so we must have C = B.

Now suppose B 6= C and the last colunms of B and C do not contain a pivot. Since we still have B′ = C′,
B and C can differ at most by entries in the mth column. Suppose the first time an entry bjm in the mth

column of B does not match the corresponding entry cjm of C happens when j = i. Let u be any solution
of Bu = 0Fn . Since C is row equivalent to B (since both B and C are row equivalent to A), u will also
satisfy Cu = 0Fn . Thus,

(B−C)u = 0Fn

On the other hand, the ith coordinate of (B−C)u is (bim − cim)um. Since bim 6= cim we must have
um = 0. Thus, any solution u of Bu = 0Fn = Cu must have um = 0. It follows that the last columns of B
and C must contain some pivot otherwise, the last column would be a free column that puts no restriction
on um. But this contradicts the premises of the situation of this paragraph, that B 6= C and the last
columns of B and C do not contain a pivot.

We can thus conclude that if B and C are each row equivalent to a given matrix A, and both B and C are
in row echelon form, then B = C. �

Here is why we are interested in matrices in reduced row echeleon form. Suppose you are given an n ×m
linear system S (A,b)

a11x1 + · · ·+ a1mxm = b1
...

an1x1 + · · ·+ anmxm = bn

with coefficient matrix A = (aij) 1≤i≤n
1≤j≤m

and inhomogeneous part b = (bi)1≤i≤n. Form the augmented matrix

[A | b] : this will be the n× (m+ 1) matrix whose first m columns coincide with the corresponding columns

of A and whose (m+ 1)
th

column coincides with the vector b.

Lemma 7.3. If [B | c] is an (augmented) matrix obtained from [A | b] by applying an elementary row
operation, then the solutions of the linear system with coefficient matrix B and inhomogeneous part c
coincide with the solutions of the linear system with coefficient matrix A and inhomogeneous part b.

Proof. Each row of an augmented matrix corresponds to a particular equation of the corresponding linear
system. For example the ith row of [A | b] will be [ai1, ai2, . . . , aim, bi] and this corresponds to the equation

ai1x1 + · · ·+ aimxm = bi .

There are three basic elementary operations to consider.

• If [B | c] is obtained from [A | b] by interchanging two rows, then clearly the solution sets are not
going to change since the set of equations for [B | c] will be the same as that of [A | b], it’s just
that they’ll be written in a slightly different order.
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• If [B | c] is obtained from [A | b] by replacing a row by its scalar multiple by an non-zero element
λ ∈ F. Say this is done to the ith row of [A | b]. The equation

ai1x1 + · · ·+ aimxm = bi

has exactly the same solutions as

λai1x1 + · · ·+ λaimxm = λbi ,

it is clear that in modifying one row in this way is not going to affect the solutions of the corre-
sponding linear systems.

• Suppose we replace the ith row of [A | b] with its sum with λ times its jth row. In this case, we
observe that any solution of

ajix1 + · · ·+ ajmxm = bj

ai1x1 + · · ·+ aimxm = bm

also satisfies

aj1x1 + · · ·+ ajmxm = bj

(ai1 + λaj1)x1 + · · ·+ (aim + λajm)xm = bi + λbj

and vice versa.1

�

From this lemma, it follows that

Corollary 7.4. If [B | c] is a matrix in reduced row echelon form obtained from [A | b] by a sequence of
elementary row operations, then the solutions to the linear system corresponding to [A | b] will be the same
as the solutions to the linear system corresponding to [B | c].

Now I’ll try to indicate what’s especially nice about the set of equations corresponding to an augmented
matrix in reduced row echelong form. This I’ll do via a sequence of examples.

Example 7.5. Consider the system

x1 + 2x2 + x3 = 8

x1 − x2 + x3 = 2

2x1 + x2 − x3 = 1

This system has augmented matrix

[A | b] =

 1 2 1 8
1 −1 1 2
2 1 −1 1


1Suppose (x1, . . . , xm) satisfies both

aj1x1 + · · ·+ ajmxm = bj (1a)

ai1x1 + · · ·+ aimxm = bi (1b)

Then, for any λ ∈ F we have an identity

(2) λaj1x1 + · · ·+ λajmxm = λbj

And so if we add the left hand side of (2) to the left hand side of (1b) and the right hand side of (2) to the right hand side of

(1b) we get the identity

(3) (ai1 + λaj1)x1 + · · ·+ (aim + λajm)xm = bi + λbj

and so any solution of (1a) and (1b) will also be a solution of (1a) and (3). The opposite inclusion is proved similarly.
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Using the elementary row operations we can transform [A | b] to the following reduced row echelon form:

[A′ | b′] =

 1 0 0 1
0 1 0 2
0 0 1 3


The solutions to the system of equations corresponding to [A′ | b] must be same as the solution to the
original system. But once we write them down

1 · x1 + 0 · x2 + 0 · x3 = 1
0 · x1 + 1 · x2 + 0 · x3 = 2
0 · x1 + 0 · x2 + 1 · x3 = 3

 ⇐⇒

 x1 = 1
x2 = 2
x3 = 3

We see that the equations corresponding to the reduced row echelon form effectively state the solution.

Example 7.6. Consider the linear system

x1 − x2 + x3 = 2

x1 + 2x2 + x3 = 5

x1 + x2 − x3 = 0

−x1 + x2 = 0

It’s augmented matrix 
1 −1 1 2
1 2 1 5
1 1 −1 0
−1 1 0 0


row reduces to the following matrix in reduced row echelon form

:


1 0 0 1
0 1 0 1
0 0 1 2
0 0 0 0


From the augmented matrix in reduced row echelon form we can again read off the solution

x1 = 1

x2 = 1

x3 = 2

0 = 0

of the original linear system.

In the two preceding examples, we had systems for which there is just a single solution (just one set of
values of x1, x2 and x3 that would provide a solution). The next example will serve to illustrate the way
things turn out when there are multiple solutions.

Example 7.7. Consider the linear system

x1 + x2 + x3 − x4 = 2

x1 − x2 − x3 + x4 = 0

3x1 + x2 + x3 − x4 = 4

(Note that we have fewer equations than unknowns - so we should expect multiple solutions.) As before we
write down the augmented matrix and then transform it to a matrix in reduced row echelon form 1 1 1 −1 2

1 −1 −1 1 0
3 1 1 −1 4

 →

 1 0 0 0 1
0 1 1 −1 1
0 0 0 0 0
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The equations corresponding to the augmented matrix in reduced row echelon form are

x1 = 1

x2 + x3 − x4 = 1

0 = 0

This presentation of the solution space is not nearly as clean as in the preceding two examples, but it’s
about the best we can do, because we simply don’t have enough independent equations to determine the
solution uniquely. All we can say is that x1 has to equal 1 and x2, x3 and x4 are related by x2+x3−x4 = 1.

However, we can provide a slightly better interpretation of the equations. Let us adopt the convention
that when we write down the equations corresponding to a augmented matrix in reduced row echelon form,
we keep the variables corresponding to columns with pivots on the left hand side and move the variable
corresponding to columns without pivots to the right hand side (after multiplying by −1).

In the present case, the pivots of  1 0 0 0 1
0 1 1 −1 1
0 0 0 0 0


occur in columns 1 and 2; and so when we write down the equations for this augmented matrix we’ll keep
the variables x1 and x2 on the left hand side and move the variables x3 and x4 over to the right hand side
(as these variables correspond to columns without pivots). Thus, we write

x1 = 1

x2 = 1− x3 + x4

We now interprete this last set of equations as saying x1 = 1, x2 is a certain function of x3 and x4, but
there is no restriction placed on the variables x3 and x4.

Let us now write down a typical solution vector. Since no restriction is placed on the variables x3 and x4,
we can allow these variables to be any real number. Say, x3 = r ∈ R and x4 = s ∈ R. Then a typical
solution vector will have the form

(*) x =


x1
x2
x3
x4

 =


1

1− r + s
r
s

 =


1
1
0
0

+ r


0
−1
1
0

+ s


0
1
0
1

 ; r, s ∈ R

or

x =


1
1
0
0

+ something in the span of


0
−1
1
0

 ,


0
1
0
1


We note that this last presentation of the solution is somewhat reminiscent of Theorem 7.7 In fact, as we’ll
now see, that this last presentation corresponds precisely to the way Theorem 7.7 tells us to write down
solutions to an inhomogeneous linear system.

Consider now the homogeneous linear system corresponding to the present example:

x1 + x2 + x3 − x4 = 0

x1 − x2 − x3 + x4 = 0

3x1 + x2 + x3 − x4 = 0

Row reduceing its augmented matrix we get 1 1 1 −1 0
1 −1 −1 1 0
3 1 1 −1 0

 →

 1 0 0 0 0
0 1 1 −1 0
0 0 0 0 0
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From which we conclude, using the convention above,

x1 = 0

x2 = −x3 + x4

Any vector x0 satisfying these two equations will have to have the form

(**) x0 =


0

−r + s
r
s

 = r


0
−1
1
0

+ s


0
1
0
1


Comparing (**) with (*), we see that the last two terms on the right in (*) correspond precisely to x0 which
is the general solution of the corresponding homogeneous system. The first term on the right hand side of
(*) 

1
1
0
0


is, by itself, a solution of the original inhomogeneous system. It is the solution obtained by choosing r and
s to be 0.

In summary, the reduced echelon form of the augmented matrix gives us a means of writing the general
solution to an inhomogeneous linear system as the sum of a particular solution plus the general solution of
the corresponding homogeneous system.

Example 7.8. Express the solution of the following linear system in the form expressed by Theorem 7.7.

x1 − x2 + 2x3 = 1

x1 + x2 − x3 = 2

Following our by now standard procedure we calculate the corresponding augmented matrix in reduced row
echelon form: [

1 −1 2 1
1 1 −1 2

]
→

[
1 0 1

2
3
2

0 1 − 3
2

1
2

]
So we have

x1 =
3

2
− 1

2
x3

x2 =
1

2
+

3

2
x3

Regarding x3 as a free variable, we can write the general solution as

(***) x =

 x1
x2
x3

 =

 3
2 −

1
2s

1
2 + 3

2s
s

 =

 3
2
1
2
0

+ s

 − 1
2

3
2
1


Regarding the vector

 3
2
1
2
0

 as a particular solution of the original linear system and s

 − 1
2

3
2
1

 as the

general solution of the corresponding homogeneous system, the right hand side of (***) expresses the
general solution of the original linear system in the form given by Theorem 7.7.

1. Summary: Solving Linear Systems

Below are the steps we’ve employed to solve a linear system an n×m linear system Ax = b with coefficient
matrix A ∈Matn,m (F) and inhomogeneous part b ∈ Fm.
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(1) Form the augmented matrix [A|b] ∈Matn,m+1 (F).
(2) Apply elementary row operations to reduce [A|b] to a matrix [A′|b′] in reduced row echelon form.
(3) Identify the columns of A′ that contain pivots (first non-zero entries of a row). The columns

without pivots will correspond to the free parameters of the solution, the columns with pivots will
correspond to the variables that can be expressed in terms of the free parameters of the solution.
Thus, if the matrix A′ has r pivots, there will be m − r free parameters in the solution; let’s
denote these free parameters by s1, s2, . . . , sm−r.

(4) Write down the linear system corresponding to the augmented matrix [A′|b′] and then move the
variables corresponding to free parameters (corresponding in turn to columns without pivots) to
the right hand side. With these equations, you can now express each component xi of a solution
vector x as a linear function of the free parameters

xi =

{
xi (s1, . . . , sm−r) ; if xi corresponds to a column with a pivot
sj ; if xi corresponds to the jth column without a pivot

(5) Write down the general solution vector as

x =


x1 (s1, . . . , sm−r)
x2 (s1, . . . , sm−r)

...
xm (s1, . . . , sm−r)


and then x with respect the free parameters. This will lead to a vector equation in the form

(*) x = b′ + s1b1 + s2b2 + · · ·+ sm−rbm−r

Here b′ corresponds precisely to the last column of the augmented matrix [A′|b′] in reduced row
echelon form. The vectors bi in this expansion are formed via

jth component of bi := coefficient of si in the jth component of x

We shall see latter that the vectors bi, . . . ,bm−r actually form a basis for the solution space of
the corresponding homogeneous linear system:

solution set of Ax = 0 = spanF (b1, . . . ,bm−r)

Also, since the s1, . . . , sm−r are free parameters, we can obtain a particularly simple solution
by setting each si = 0F . Thus, equation (*) amounts to writing the solution of Ax = 0 in the
form expressed by Theorem 7.7:

x = (a particular solution of Ax = b) + (a solution of Ax = 0)


