
LECTURE 5

Finitely Generated Vector Spaces

We are now in position to prove some general theorems about finite dimensional vector space that will be
crucial to a number of applications.

But before starting on this, let me try to explain again, in a different way, our approach. The one habit I’ve
been trying to wean you of is the an over-reliance upon concrete examples to develop your understanding.
The vector space Rn is a very concrete and familar example of a vector space over a field. To do calculations
in this setting all you need to do is apply arithmetic (over and over and over). On the other hand, there
are a number of other sets can be endowed with operations of scalar multiplication and vector addition so
that they behave like Rn. So we have a certain dichotomy here; a concrete and familar object, Rn, and an
associated set of patterns (the axioms of a vector space). What we are trying to do is deduce things from
the patterns (axomatic vector space structure) that must be true for any object that satisfies the basic set
of patterns. This allows us to say a whole lot about a whole lot of situations fairly succinctly.

However, in applications, one generally works in one particular situation at a time. Sometimes, for example,
in freshman physics, one represents the points in space as list of three integers so often that people forget
all the underlying apparatus that goes into interpreting a list three numbers as a point in space. But, in
fact, one is using the calculational setting of R3 to deduce things about vector-like objects in space.

The trouble though with a purely abstract point of view is there is no means to calculate things. Think for
a minute one how you would describe the location of particular objects in space without first setting up a
coordinate system. Well, it works like this

points in space + coordinate system ⇒ a representation of point in space as elements of R3

Once we represent points in space by elements of R3 we can start to do cacluations.

Last time we began setting up the rudiments of a more general procedure

elements of a vector space V over a field F + a basis for V ⇒ a representation of v ∈ V as an element in Fn

Once we specify the rules for arithmetic in the field Fn, such a “coordinatization” of a vector spave V over
F will allow us to calculate things in V . Indeed, the most important reason for introducing the notion of
a basis is that the notion is essential to making questions about abstract vector spaces calculable.

Okay, here is a simple but useful lemma.

Lemma 5.1. If {v1, . . . , vm} is a linearly dependent set and if {v1, . . . , vm−1} is a linearly independent set
then vm can be expressed as a linear combination of v1, . . . , vm−1.

Proof. By hypothesis, there is a dependence relation of the form

(*) λ1v1 + · · ·+ λm−1vm−1 + λmvm = 0V
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with at least one of the coefficients λi 6= 0F. If it happened that λm = 0F, then we have

(**) λ1v1 + · · ·+ λm−1vm−1 = 0V

with at least one of the λi, 1 ≤ i ≤ m − 1 not equal to 0F. But then (**) would provide a dependence
relation amongst the v1, . . . , vm−1. But this is forbidden, since by hypothesis, the vectors v1, . . . , vm−1 are
linear independent. Thus, we cannot have both (*) and λm = 0F. Since λm 6= 0F, we can divide each term
in (*) by λm, to get

λ1
λm

v1 + · · ·+ λm−1

λm
vm−1 + vm = 0V

or

vm = − λ1
λm

v1 − · · · −
λm−1

λm
vm−1

Thus, vm is a linear combination of v1, . . . , vm−1. �

Theorem 5.2. Every finitely generated vector space has a basis.

Proof. Let V be a vector space generated by n non-zero vectors v1 . . . , vm. By Theorem 3.3, any set of
m+ 1 vectors in V must be linearly dependent. On the other hand, the set {v1} is certainly independent.
We will now systematically generate a basis for V .

• Consider {v1}. Since v1 6= 0 this is a linearly independent set.
• Consider {v1, . . . , vm}. If this set is linearly independent, then will constitute a basis for V , since

we already presume that it generates V .
If this set is not linearly independent, then there is a dependence relation

β1v1 + · · ·+ βmvm = 0V

with at least one non-zero coefficient. By reordering the vectors, if necessary, we can presume that
βm 6= 0F. But then we can express

vm = − β1

βm
v1 − · · · −

βm−1

βm
vm−1

And this will allow us to express every vector v ∈ V = spanF (v1, . . . , vm) as a linear combination
of v1, . . . , vm−1.

So either {v1, . . . , vm} is a basis or we can re-express V as spanF (v1, . . . , vm−1).
• We can repeat the logic of the preceding step. Either {v1, . . . , vm−1} is a basis, or we can re-express
V (after a suitable reordering of the vectors) as spanF (v1, . . . , vm−2).
• Repeating this process we will eventually either reach V = spanF (v1) from which we’ll conclude

that {v1} is a basis for V or somewhere along the way we reached a generating set {v1, . . . , vj}
consisting of linearly independent vectors. In the latter case, we can take {v1, . . . , vj} as a basis
for V .

�

Theorem 5.3. Let V = spanF (v1, . . . , vm) be a finitely generated vector space. Then a basis for V can be
selected from among the set of generators {v1, . . . , vm}. In other words, any set of generators for a finitely
generated vector space V contains a basis for V .

Proof. The construction of such a basis is given in the proof of Theorem 5.2. �

Theorem 5.4. Let {v1, . . . vk} be a linearly independent set of vectors in a finitely generated vector space
V . If v1, . . . , vk is not a basis of V then there exist other vectors vk+1, . . . , vm, such that {v1, . . . , vm} is a
basis for V .

Proof. By Theorem 7.2, V , being a finitely generated vector space, has a basis, say {b1, . . . , bn}. From
Theorem 3.3 we know that the cardinality of any set of linearly independent vectors in V can not exceed
the number of generators of V . Since V = spanF (b1, . . . , bn) we must have k ≤ n.
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Now if. in fact, k = n, each {v1, . . . , vn, bi} must be a linearly dependent set. And so by Lemma 5.1, we
can express each bi as a linear combination of v1, . . . , vn. So {v1, . . . , vn} is, in fact, a linearly independent
set that generates V ; hence it is a basis.

Next suppose k = n−1. Then some bi /∈ spanF (v1, . . . , vn−1) (otherwise, all bi would lie in span (v1, . . . , vn−1)
and so {v1, . . . , vn−1} would be a linear independent set of (n− 1) vectors generating the vector space
V = spanF (b1, . . . , bn) of dimension n, which is impossible). But then {v1, . . . , vn−1, bi} will be a linearly
independent set generating V , and hence will be a basis for V .

We now suppose that n−k > 1, and the induction hypothesis that the theorem holds whenever the difference
between dimV and the number of vectors {v1, . . . , vk} is less that n−k. Since span (v1, . . . , vk) 6= V , there
has to be some basis vector bi /∈ span (v1 . . . , vk). Then, as before {v1, . . . , vk, bi} is a linearly independent
set of k + 1 vectors. By the inductive hypothesis any linearly independent set of k + 1 vectors can be
extended to a basis for V ; for

n− (k + 1) = n− k − 1 < n− k
We can thus complete the set {v1, . . . , vk, bi} to a basis {v1, . . . , vk, bi, bk+i+1, . . . , bn} of V . This then
completes {v1, . . . , vk} to a basis of V . �

Given two subsets S and T of a vector space V , we construct two additional subsets of V ; viz,

S ∩ T = {v ∈ V | v ∈ S and v ∈ T}
S ∪ T = {v ∈ V | v ∈ S or v ∈ T}

When S and T are, in fact, subspaces of V , then natural questions to pose would be Is S ∩ T a subspace
of V ? and Is S ∪ T a subspace of V ? These two questions were already posed in problems 4 amd 5 of
Homework Set 1. The answers are easy enough to answer directly here.

Lemma 5.5. Let S and T be two subspaces of a vector space V over a field F. Then S ∩ T is a subspace of
V .

Proof.

It suffices to show that every linear combination of two elements of S ∩ T is an element of S ∩ T . Suppose
then that u, v ∈ S ∩ T and α, β ∈ F. Then

αu+ βv ∈ S since in particular u, v ∈ S and S is a subspace

αu+ βv ∈ T since in particular u, v ∈ T and T is a subspace

So αu+ βv ∈ S ∩ T and the proposition follows. �

Lemma 5.6. Suppose S and T are subpaces of a vector space V over a field F. Then S ∪ T need not be a
subspace.

Proof. It suffices to find one counter-example. Consider the following two subsets of R2

S = {[x, 0] | x ∈ R} ,
T = {[0, y] | y ∈ R} .

The vectors u = [1, 0] ∈ S and v = [0, 1] ∈ T , certainly lie in S ∪ T . However, their vector sum

u+ v = [1, 1]

does not lie in S ∪ T , because every element of S ∪ T has to be a vector that is either of the form [x, 0] or
the form [0, y] . �

There is, however, another way to get a subspace from two subspaces
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Definition 5.7. Let S and T be two subspaces of a vector space V . Set

S + T = {v = s+ t | s ∈ S and t ∈ T}

What we’ve done here, of course, is defined our way around the problem underlying the counter-example
in Lemma 5.6. That is to say, we have defined S + T in such a way as to guarantee that every linear
combination of elements of S + T is another element of S + T . Indeed if v1 = s1 + t1 and v2 = s2 + t2 are
arbitary elements of S + T , then

αv1 + βv2 = α (s1 + t1) + β (s2 + t2) = (αs1 + βs2) + (αt1 + βt2) ∈ S + T

since αs1 + βs2 ∈ S and αt1 + βt2 ∈ T .

Recall we defined subspaces precisely so that we could focus on subsets of a vector space V that were also
vector spaces. The following lemma has similar utility, if you start in the category of finitely generated
vector spaces and begin looking at subspaces, then you stay inside the category of finitely generated vector
spaces.

Lemma 5.8. If S is a nontrivial subspace of a finitely generated vector space V , then S itself is finitely
generated.

Proof. Since S is nontrivial, it has at least one non-zero vector, say v1. Since S is a subspace, the vector
generates a subspace spanF (v1) of S. If spanF (v1) = S, then S is generated by v1 and we are done.

If S 6= spanF (v1), then there must be a non-zero vector v2 ∈ S that is not in spanF (v1). In fact, {v1, v2}
must be linearly independent in this situation. For if

α1v1 + α2v2 = 0V α1 and a2 not both 0F

we would have
α1v1 = −α2v2

Which would either put v2 ∈ spanF (v1) if α2 6= 0 (a contraction), or would put α1 = 0F if α2 = 0F (since
v1 is by assumption non-zero). If spanF (v1,v2) = S, then S is generated by two vectors and we are done.

Otherwise, there has to be a third non-zero vector v3 /∈ spanF (v1, v2). By essentially the same argument as
in the preceding paragraph, the vectors {v1, v2, v3} will have to be linearly independent in this case. And
we can continue this process for finding more and more linearly independent vectors v1, . . . , vi is S.

The point though is that this process has to terminate after finitely many steps. Because, by Theorem 5.2
a finitely generated vector space always has a basis. Say V has a basis {b1, . . . , bn}. Then by Lemma 4.1,
if i > n, then and set of i vectors in S (hence in V ) must be linearly dependent. On the other hand, the
only way the above algorithm can terminate is for S = span (v1, . . . , vi) for some i. We conclude that this
indeed must be what happens for some i ≤ n, and so S is finitely generated. �

Theorem 5.9. Let S and T be finitely generated subspaces of a vector space V . Then S ∩ T annd S + T
are finitely generated subspaces, and we have

dim (S + T ) + dim (S ∩ T ) = dimS + dimT

Proof. Let us first consider the case when S ∩ T is {0V }. Choose a basis {s1, . . . , sm} for S and a basis
{t1, . . . , tn} for T . I claim {s1, . . . , sm, t1, . . . , tn} is a basis for S + T . Indeed, vvery vector in v ∈ S + T
can then be expressed in the form s+ t with s ∈ S and t ∈ T . Since every s ∈ S can be written as a unique
linear combination of s1, . . . sm and every t ∈ T can be expressed as a linear combintation of t1, . . . , tn, we’ll
have

v = s+ t = (a1s1 + · · ·+ an) + (b1t1 + · · ·+ bntn)

= a1s1 + · · ·+ amsm + b1t1 + · · ·+ bntn
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so S + T is generated by {s1, . . . , sm, t1, . . . , tn}. I claim (under the hypothesis that S ∩ T = {0V }) that
{s1, . . . , sm, t1, . . . , tn} is a linearly independent set. Suppose we had a dependence relation amongst these
vectors

(*) α1s1 + · · ·+ αmsm + β1t1 + · · ·+ βntn = 0V (with at least one coefficient nonzero)

Then, moving the terms involving the ti’s to the right hand side we’ll have

α1s1 + · · ·+ αmsm = −β1t1 − · · · − βntn .

Now the left hand side is in S while the right hand side is in T . By hypothesis, only vector common to
both S and T is 0V . Thus,

α1s1 + · · ·+ αmsm = 0V = −β1t1 − · · · − βntn
Since the basis vectors {s1, . . . , sn} are linearly independent the equality on the left forces α1 = 0F, α2 =
0F, . . . , αm = 0F; and similarly since the basis vectors {t1, . . . , tn} are linearly independent the equality on
the right forces β1 = 0F, β2 = 0F, . . . , βn = 0F. But this contradicts the existence of the dependence relation
(*). Thus, when S ∩ T = {0V }, the vectors {s1, . . . , sm, t1, . . . , tn} will form a basis for S + T . In this
case, we have

dim (S + T ) + dim (S ∩ T ) = # {s1, . . . , sm, t1, . . . , tn}+ 0 = m+ n

while

dim (S) + dim (T ) = # {s1, . . . , sm}+ # {t1, . . . , tn} = m+ n

and so the statement of the theorem is confirmed.

Let us now consider the case when S ∩ T 6= {0V }. S ∩ T is subspace of a finitely generated subspace
(S ∩ T ⊂ S which by hypothesis is finitely generated), S ∩ T is finitely generated and so has a basis
{u1, . . . , uk}, where k = dim (S ∩ T ). Since {u1, . . . , uk} is a set of linear independent vectors in S and so,
by Theorem 5.4, it can can be extend to a basis for S. Similarly, regarding {u1, . . . , uk}as a set of linear
independent vectors in T , it can be completed to a basis for T . So doing we set

{u1, . . . , uk, v1, . . . , vm} , a basis for S

{u1, . . . , uk, w1, . . . , wn} , basis for T

Then certainly

v ∈ S + T ⇒ v = (α1u1 + · · ·+ αkuk + αk+1vk+1 + · · ·+ αmvm) +
(
β1u1 + · · ·+ βkuk + βk+1wk+1 + · · ·+ βnwn

)
⇒ v = (α1 + β1)u1 + · · ·+ (αk + βk)uk + αk+1vk+1 + · · ·+ αmvm + βk+1wk+1 + · · ·+ βnwn

⇒ v ∈ spanF (u1, . . . , uk, v1, . . . , vm, w1, . . . , wn)

And its just as easy to show that

v ∈ spanF (u1, . . . , uk, v1, . . . , vm, w1, . . . , wn) ⇒ v ∈ S + T .

So

S + T = spanF (u1, . . . , uk, v1, . . . , vm, w1, . . . , wn)

I claim {u1, . . . , uk, v1, . . . , vm, . . . , w1, . . . , wn} not only generates S+T , it is, in fact, a basis for S+T . To
show this, we just need to demonstrate the vectors {u1, . . . , uk, vk+1, . . . , vm, wk+1, . . . , wn} form a linearly
independent set. Suppose

(*) α1u1 + · · ·+ αkuk + β1v1 + · · ·+ βmvm + γ1w1 + · · ·+ γnwn = 0V .

Then we have

β1v1 + · · ·+ βmvm = −α1u1 − · · · − αkuk − γ1w1 − · · · − γnwn
Now the left hand side is manifestly in S while the right hand side is manifestly in T . So both sides must
be in S ∩ T . This being the case, we can express either side of as linear combination of only the vectors
u1, . . . , uk. But then we must have an identity like

β1v1 + · · ·+ βmvm = λ1u1 + · · ·+ λkuk

or

β1v1 + · · ·+ βmvm − λ1u1 − · · · − λkuk = 0V .
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But the vectors {u1, . . . , uk, v1, . . . , vm} are a bais for S and so are linearly independent. This circumstance
forces all the coefficients β1, . . . , βm = 0F. Simiarly, we could rewrite (*) as

γ1w1 + · · ·+ γnwn = −α1u1 − · · · − αkuk − β1v1 − · · · − βmvm
and deduce from this that γ1, . . . , γn must all be equal to 0F. Then given that 0F = β1 = β2 = · · · = βm
and 0F = γ1 = γ2 = · · · = γn, we can further conclude from (*) that 0F = α1 = α2 = · · · = αk, since the
vectors v1, . . . , vk are linearly independent. Thus, since each of the coefficients must be equal to 0F, (*) can
not be a bone fide dependence relation, and so the vectors {u1, . . . , uk, v1, . . . , vm, w1, . . . , wn} are linearly
independent and so provide a basis for S + T . We then have

dim (S + T ) = k +m+ n

where

k = dim (S ∩ T )

m = dim (S)− dim (S ∩ T )

n = dim (T )− dim (S ∩ T )

And so

dim (S + T ) = dim (S ∩ T ) + dim (S)− dim (S ∩ T ) + dim (T )− dim (S ∩ T )

from which the statement of the theorem follows. �

1. Infinite Dimensional Vector Spaces

We have just seen that all finitely generated vectors spaces are finite-dimensional. In this course, we will
not say much about vectors spaces that are not finitely generated. Yet, such vector spaces are extremely
important to mathematics and its applications. So I’ll take a minute or so here to talk about how the
notion of bases and dimension is dealt with in the case when a vector space V is not finitely generated.

To get this discussion moving forward we need to first adopt a standard axiom of set theory: the Axiom of
Choice.

Axiom 5.10. Given any family F of mutually disjoint nonempty sets, there exists at least one set that
contains exactly one element of each set in F .

This axiom turns out to be equivalent to the following property of partially ordered sets.

Lemma 5.11 (Zorn). If S is any non-empty partially ordered set in which every totally ordered subset in
has an upper bound, then S has a maximal element.

Theorem 5.12. Every non-trivial vector space V has a basis.

Proof. Let L be a set of linearly independent vectors in V (e.g. L = {v1} for some non-trivial vector in V ).
Let J be the set of linearly independent subsets of V that contain L, partially ordered by inclusion. Then
J is non-empty because L ∈ J . Moreover, if J1 ⊂ J2 ⊂ J3 ⊂ · · · is a totally ordered chain of subsets in
J , then

M =
⋃
i

Ji

is also a linearly independent subset of V containing L, for if

r1v1 + · · ·+ rnvn = 0

with vi ∈ Jα(i), Let α = max {α (i)} (there are at most n distinct a (i), and each is in N, so we can find α).
But then all the vectors {v1, . . . , vn} are in Jα. Since Jα is a linearly independent set r1, . . . , rn must all
equal 0F. Hence, no dependence relation can exist amongst the vectors in M so M is a linearly independent
set containing L; hence M is in J . It is also clear that by construction tht M is a maximal element of for
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the chain J1 ⊂ J2 ⊂ J3 ⊂ · · · . Since every chain in J has a maximal element, J itself has an maximal
element, call it B.

Now set W = span (B). If W = V , then B is a linearly independent set spanning V and so B is a basis.
Suppose to the contrary, V 6= W . Then there exists v ∈ V −W . But then we can have no dependence
relation of the form

av + a1v1 + · · ·+ anvn = 0 with v1, . . . , vn ∈ B
So {v, v1, . . . , vn} is a linearly indepedent set containg L, contradicting the maximality of B, Thus, no such
v can exist and so V = span (B).

Remark 5.13. In fact, the statement that every vector space has a basis is equivalent to the Axiom of
Choice. (We’ve already seen how the Axiom of Choice, via Zorn’s Lemma, allows one to deduce the
existence of a basis for a general vector space. On the other hand, it turns out that if one postulates that
every vector space has a basis, then the Axiom of Choice can be deduced as a consequence.)


