
LECTURE 4

Elementary Operations and Matrices

In the last lecture we developed a procedure for simplying the set of generators for a given subspace of the
form

S = spanF (v1, . . . , vk) := {α1v1 + · · ·+ αkvk | α1, . . . , αk ∈ F}
It went like this

• Find a dependence relation amongst the vectors v1, . . . , vk; that is to say, a valid equation of the
form

α1v1 + · · ·+ αkvk = 0V

with at least on coefficient, say αi, not equal to 0F. We’ll then have

S = spanF (v1, . . . , vk) = spanF (v1, . . . , v̂i, . . . , vk)

(here a ”̂ ” over a list entry is to signify that this element does not appear in the list) and so we
can express S as being generated by k − 1 vectors.
• Find a dependence relation amongst the vectors v1, . . . , v̂i, . . . , vk, and use that to eliminate one

more vector, say vj , from the list of geneators

⇒ S = spanF (v1, . . . , v̂i, . . . , v̂j , . . . , vk)

• Keep repeating this process until one can no longer find a dependence relation amongst the gen-
erators of S.

Of course, what’s missing in this discussion is exactly how we are to find a dependence relation. Today we’ll
try to fill that gap.

1. Elementary Operations

Lemma 4.1. Suppose {v1, . . . , vn} be a set of vectors and let S = spanF (v1, . . . , vn) be the subspace generated
by v1, . . . , vn.

(i) If λ is a non-zero element of F, then

S = spanF (v1, . . . , vi−1, λvi, vi+1, . . . , vn)

(ii) If 1 ≤ i < j ≤ n , then

S = spanF (v1, . . . , vj−1, vj + vi, vj+1, . . . , vn)

Proof.

(i) Let S′ = spanF (v1, . . . , vi−1, λvi, vi+1, . . . , vn). If v ∈ S′ then

v = α1v1 + · · ·+ αi (λvi) + · · ·+ αnvn

= α1v1 + · · ·+ (αiλ) vi + · · ·+ αnvn

∈ S.
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and so each element of S′ is an element of S.

On the other hand, let v be an arbitrary element of S. Then

v = α1v1 + · · ·+ αivi + · · ·+ αnvn

= α1v1 + · · ·+ αi

λ
λvi + · · ·+ αnvn (which is valid since λ 6= 0F)

= σ1v1 + · · ·+ αi

λ
(λvi) + · · ·+ αnvn ∈ S′

So any element v ∈ S is also an element of S′.

Since S′ ⊆ S and S ⊆ S′ implies S = S′, (i) is proved.

(ii) Let S′ = spanF (v1, . . . , vj−1, vj + vi, vj+1, . . . , vn). if v ∈ S′, then v has the form

v = α1v1 + · · ·+ αivi + · · ·+ αj (vi + vj) + · · ·+ αnvn

= α1v1 + · · ·+ (αi + αj) vi + · · ·+ αjvj + · · ·+ αnvn

∈ S

and so, since each element of S′ is in S,

S′ ⊆ S.

On the other hand, if v ∈ S, then v has the form

v = α1v1 + · · ·+ αivi + · · ·+ αjvj + · · ·αnvn

= α1v1 + · · ·+ (αi − αj + αj) vi + · · ·+ αjvj + · · ·+ αnvn

= α1v1 + · · ·+ (αi − αj) vi + · · ·+ αj (vj + vi) + · · ·+ αnvn

∈ S′

And so,

S′ ⊆ S .

But S ⊆ S′ and S′ ⊆ S implies S = S′.

�

We have thus discovered two operations that we can perform on a set of generators of a subspace that, which
modifying particular generators, do not change the subspace generated. Note that these two operations are
essentially the two operations we have been stressing all along: scalar multiplication and vector addition.
It is a bit more conventional, however, to utilize as basic operations the following two operations.

Corollary 4.2. Let L = {v1, . . . , vn} be an ordered list of generating vectors for a subspace S of a vector
space V over a field F. The following three operations on the list L do not change the subspace generated
by the vectors in L.

(i) replacing a generating vector vi with a non-zero scalar multiple of itself: vi → λvi
(ii) replaciing a generating vector vj with its sum with a scalar multiple of another generator: vj →

vj + λvi
(iii) interchanging two vectors: vi ←→ vj

Proof. That the first operation does not affect the subspace generated was already demonstrated in Lemma
4.1. (ii) is proved by

spanF (v1, . . . , vi, . . . , vj , . . . , vn) = span (v1, . . . , λvi, . . . , vj , . . . , vn) by Lemma 4.1 (i)

= span (v1, . . . , λvi, . . . , vj + λvi, . . . , vn) by Lemma 4.1 (ii)

= span (v1, . . . , vi, . . . , vj + λvi, . . . , vn) by Lemma 4.1 (i)
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As for (iii), we can use the commutativity of vector addition to interchange terms in the sum

span (v1, . . . , vi, . . . , vj , . . . , vn) 3 α1v1 + · · ·+ αivi + · · ·+ αjvj + · · ·+ αnvn

= α1v1 + · · ·+ αjvj + · · ·+ αivi + · · ·+ αnvn

∈ span (v1, . . . , vj , . . . , vi, . . . , vn)

�

Definition 4.3. An elementary operation on a list of vectors is an operation of the type (i), (ii), or
(iii) as in Corollary 4.2.

Okay, so here’s our plan for simplifying the set vectors used to generate a subspace. We’ll look for dependence
relations by trying to set up relations of the form

vi + λvj = 0V .

Each time we can do this we can elminate vj from the set of generators (or vi if λ = 0). What follows is
a procedure for doing this in such a way that we are systematically and inevitably led to minimal set of
generators.

2. Matrices

Recall that the (underlying set of the) vector space Fm consists of all possible ordered lists of m elements
of F. Below we develop some calculational tools for working with subspaces of Fn. Later we will show how
these calculational tools can be applied in the more general setting of a vector space V over a field F.

Definition 4.4. Let F be a field. An n×m matrix over F is an ordered list of n elements of Fm.

Notation 4.5. We will use the notation Matn,m (F) to denote the set of n×m matrices with entries in F.

The way I have defined a matrix, an example of a 3× 2 matrix over R might be

[[−1, 2]] , [0, 2]] , [4,−1]]

This is, of course, not the way one is accustomed to viewing matrices. What is much more common is to
write each vector in the order list as the row of a rectangular array of real numbers; that is, to say as −1 2

0 2
4 −1


with the ordering of the rows from top to bottom following the ordering of the vectors from first to last. I
have adopted the former definition (an n×m matrix is an ordered list of n m-dimensional vectors) as that
is more mathematical than the usual visual definition (a n ×m matrix is an arrangement of nm numbers
into an array with n rows and m columns). But of course the two definitions are equivalent. Moreover,
despite the good mathematical intentions of the first defintion, the second presentation (in terms of arrays
of numbers) is more helpful in carrying out calculations.

Definition 4.6. The row space RowSp (A) of an n ×m matrix A ∈ Matn,m (F) is the subspace of Fm

that is generated by the n (row-) vectors of the matrix. The column space ColSp (A) of an n×m matrix
A is the subspace of Fn generated by the column vectors of A.

Proposition 4.7. Let [v1, . . . , vn] be an n×m matrix. If an elementary operation (see Corollary 4.2 and
Definition 4.3) is applied to this list of vectors, the new list of vectors is matrix that has the same row space.
More generally, if M is a matrix and M′ is a matrix obtained from M by applying a sequence of elementary
row operations to the (row) vectors of M (and the intermediary matrices). Then

RowSp (M′) = RowSp (M)
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Proof. This is just Corollary 2 translated into the matrix setting and applied over and over again. �

Definition 4.8. We say that two matrices A and B are row-equivalent if one is obtainable from another
via a sequence of elementary operations.

Note that if A and B are row-equivalent then RowSp (A) = RowSp (B).

Definition 4.9. v = [α1, . . . , αn] be an element of F. The pivot of v is the first (following the natural
ordering of the list entries) αi that is not equal to 0F. If αi is the pivot of v = [α1, . . . , αi, . . . , αn]. then i
is the pivot position of v.

Definition 4.10. A matrix A = [v1, . . . , vn] is in row echelon form, if the pivot position of vi is less
than the pivot position of vj whenever i < j.

Proposition 4.11. Let A be an n×m matrix. Then there exists a sequence of elementary operations that
converts A to a matrix in row echelon form.

Proof. Let us say that a matrix A = [v1, . . . , vn] is in semi-row-echelon form if we have

PivPos(vi) ≤ PivPos(vj)

whenever i ≤ j. It is always possible to convert a matrix to semi-row-echelon for simply by interchanging
setting up a correspondence between row vectors and their pivot positoins

v1 v2 · · · vn
l l · · · l

PivPos (v1) PivPos (v2) · · · PivPos (vn)

and then by interchanging the columns of this correspondence, arranging matters so that the pivot positions
listed at the bottom form a non-decreasing sequence of numbers.

We emphasize again that we can alway transform matrix into semi-row-echelon form simply by interchanging
rows until we have achieved this.

Let us now say that a matrix A = [v1, . . . , vn] is in row echelon form up to row k if it is in semi-row echelon
form and if for every i < k we have PivPos (vj) < PivPos(vi) for all 1 ≤ j < i ≤ k. Clearly, when A is an
n ×m matrix that is in row echelong form up to row n, it is also in row echelon form. We will show that
if A is a matrix that is in row echelon form up row k that it will always be possible to apply elementary
operations to A and thereby obtain a matrix A′ that is in row echelon form up to row k+ 1. Iterating this
process successively, we can eventually convert A to a matrix that is in row echelon form up to row n; that
is a matrix that is in row echelon form.

So let k be the largest integer (between 1 and n) such that A = [v1, . . . , vn] is in row echelon form up to
row k If k = n we are done, as A will already be in row echelon form. Otherwise, there has to be row
vector vk, vk+1, . . . , vk+j for which PivPos (vk+1) = · · · = PivPos (vk+j). Say i = PivPos (vk). Then
these vectors have the form

vk = [0, . . . , 0, αi, . . . , αm]

vk+1 = [0, . . . , 0, βi, . . . , βm]

...

vk+j = [0, . . . , 0, γi, . . . , γm]
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with none of the pivots αi, βi, . . . , γi equal to 0F. We can then use the elementary operation (ii) to replace
the row vectors, vk+1, . . . , vk+j with

vk+1 → v′k+1 = vk+1 −
βi

αi
vk =

[
0, . . . , 0, 0, βi+1 −

βi

αi
αi+1, . . . , βm −

βi

αi
αm

]
...

vk+j → v′k+j = vk+j −
γi
αi
vk =

[
0, . . . , 0, 0, γi+1 −

γi
αi
αi+1, . . . , γm −

γi
αi
αm

]
Each of these vectors v′k+1, . . . , v

′
k+j will have a pivot position that’s at least k + 1. > k And so now, if we

reorder the vectors v′k+1, . . . , v
′
k+j , vk+j+1, . . . , vn so that they are in semi-row echelon form,

v′k+1, . . . , v
′
k+j , vk+j+1, . . . , vn reordering

−−−−−−−−−−→
v′′k+1, . . . , v

′′
n

and adjoin this list to tail of the list v1, . . . , vk, we will end up with a list of vectors

v1, . . . , vk, v
′′
k+1, . . . , v

′′
n

that is in row echelon form (at least) up to row k + 1.

We have now successfully demonstrated that we can use elementary row operations to convert a matrix
that is in row echelon from up to row k into a matrix that is in row echelon form up to row k+ 1. Since we
are dealing with only a finite matrices (finite lists of vectors), it is clear the we can apply this the process
again and again until we have arrived at a matrix that is in row echelon form up to row n - that is, until
we have arrived at a matrix in row echelon form. �

3. Coordinate Vectors and Coefficient Matrices

In the previous section we specialized to vector spaces of the form Fm and introduced an n×m matrix over
F as an ordered list of n elements of Fm. We’ll now return ot the general setting of a general vector space
V over a field F. The first thing to point out is how the calculational tools developed in the last section can
be brought to bear on this more general situation.

Lemma 4.12. Let B = [v1, . . . , vm] be a basis for a vector space V over a field F, then for each vector v ∈ V
there is a unique a = [a1, . . . , am] ∈ Fm such that

v = a1v1 + · · ·+ amvm .

Proof. Suppose we had two such expressions for a vector v

v = a1v1 + · · ·+ amvm (1)

v = b1v1 + · · ·+ bmvm (2)

Subtracting the second equation from the first yields

(*) 0V = (a1 − b1) v1 + · · ·+ (am − bm) vm .

Now if any of the coefficients (ai − bi) on the right hand side different from 0F then (*) would furnish us
with a dependence relation amongst the basis vectors v1, . . . , vn. But, by definition, basis vectors must be
linearly independent and so cannot have any such dependence relation. Thus, we conclude that ai− bi = 0F
for each i between 1 and m. Thus, the two expansions (1) and (2) must coincide. �

Definition 4.13. Let B = [v1, . . . , vm] be a basis for a vector space V and let v ∈ V . The coordinate
vector vB of v with respect to B is the ordered list of coefficients [a1, . . . , am] corresponding to the
expansion of v with respect to the basis B :

v = a1v1 + · · ·+ amvm ⇐⇒ vB = [a1, . . . , am] ∈ Fn .
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Note that if we are given the coordinate vector vB = [a1, . . . , am] ∈ Fm with respect to a basis B =
[v1, . . . , vm] of V we can immediately write down the element of V that corresponds to v. (Just read the
above relation right to left).

Definition 4.14. Let B = [v1, . . . , vm] be a basis for a vector space V over a field F and let [u1, u2, . . . , un]
be an ordered list of n vectors in V . To this data we can attach an n×m matrix A with entries in F. The
entries of the ith row of this matrix (1 ≤ i ≤ n) are taken to coincide with the entries of coordinate vector
of the the ith vector ui with respect to the basis B.

Theorem 4.15. Let V be an m-dimensional vector space with basis B = [v1, . . . , vm] and A be the coefficient
matrix of a set of n non-zero vectors [u1, . . . , un] with respect to B. Suppose that the row vectors r1, . . . , rn ∈
Fm of A are in row echelon form. Then the vectors u1, . . . , un are linearly independent.

Proof. We will do a proof by induction, inducing on the number n of vectors in the list [u1, . . . , un]. If
n = 1, that {u1} is linearly independent is obvious, for the only what to hve

α1ui = 0

is to take αi = 0F. Assume now that the statement is true when we have a coefficient matrix with n − 1
rows. We shall show if the coefficient matrix for [u1, . . . , un] is in row echelon form then the only way we
can have

(***) β1u1 + β2u2 + · · ·+ βnun = 0V

is by taking β1 = 0F, β2 = 0F, . . . , βn = 0F.

We’ll first show that β1 = 0F. Let λ1i be the first non-zero entry of the first row of A. This element
corresponds to the coefficient of u1 with respect to the ith basis vector vi. Since the matrix A is in row
echelon form, the leading and subsequent entries of the subsequent rows correlate to components of the
vectors u2, . . . , un along basis vectors vj with j > i. But then if we expand each uk , k = 1, . . . , n on the
left hand side with respect to the basis B, there is nothing on the left hand side of (***) to cancel the term
β1λ1ivi that arises from β1u1. So β1 must vanish.

Therefore, the first term in the expansion (***) must vanish and so we have

β2u2 + · · ·+ βnun = 0V

But now, by our induction hypothesis, it must be that u2, . . . , un are linearly independent, so all β2, . . . , βn =
0F as well. And so each βi in (***) must separately equal 0F and so the vectors u1, . . . , un must be linearly
independent. �

Theorem 4.16. Let A be the coefficient matrix expressing a list [u1, . . . , un] of vectors in V in terms of
their coefficients with respect to a basis B = [v1, . . . , vm] of V . Then the following statements hold.

(i) There exists a matrix A′ row equivalent to A, such that either A′ = 0 or there is a uniquely
determined positive integer k (between 1 and n) such that the first k rows of A′ are in row echelon
form and the remaining rows are all zero.

(ii) The vectors [w1, . . . , wk] corresponding to the first k rows of A′ form a basis for span (u1, . . . , un).
(iii) The original set of vectors are linearly independent if and only if n = k.

Proof. By Proposition 4.10 we can certainly convert A to a matrix in row echelon form by applying
elementary row operations. Because the elementary operations applied to a list of vectors do not affect
the subspace generated by the vectors (Corollary 4.2), the span of the vectors [w1, . . . , wn] corresponding
to the rows of A′ is the same as span of the vectors [u1, . . . , un] corresponding to the rows of A. But in
fact, since the 0 rows of A′ correspond to the 0-vector in V and so do not contribute to the span of vectors
[w1, . . . , wn] we have

span (u1, . . . , un) = span (w1, . . . , wk)
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We also know that by the preceding theorem that since the first k rows of A′ are in row echelon form, the
corresponding vectors w1, . . . , wk must be linear independent. And so the vectors w1, . . . , wk actually form
a basis for span (u1, . . . , un). The uniqueness of k follows from Corollary 3.4 (each basis of a subspace has
the same number of vectors). �


