LECTURE 3

Dimension and Bases

In the preceding lecture, we introduced the notion of a subspace of a vector space and an easy way to construct subspace; namely, by considering the set of all possible linear combinations of a set of vectors: if $\{v_1, v_2, \ldots, v_k\}$ is a set of vectors, then

 $span_{\mathbb{F}}(v_1,\ldots,v_k) := \{\alpha_1v_1 + \alpha_2v_2 + \cdots + \alpha_kv_k \mid \alpha_1,\alpha_2,\ldots,\alpha_k \in \mathbb{F}\}$

will be a subspace. We may also refer to $span_{\mathbb{F}}(v_1,\ldots,v_k)$ as the subspace generated by v_1,\ldots,v_k .

We noted that such a subspace may be generated may different ways; the exact same subspace being produced for different choices of v_1, \ldots, v_k . In order to make the presentation of a vector in a subspace as simple as possible it made sense to try to work with as few generators as possible. This lead us to the following definition

DEFINITION 3.1. A set of vectors is **linearly dependent** if an equation of the form

 $\alpha_1 v_1 + \dots + \alpha_k v_k = \mathbf{0}_V$

can be satisfied without setting all the coefficients $\alpha_1, \ldots, \alpha_k$ equal to $0_{\mathbb{F}}$.

This definition is related to the problem of finding a minimal set of generators by

PROPOSITION 3.2. $span_{\mathbb{F}}(v_1, \ldots, v_k) = span_{\mathbb{F}}(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k)$ if and only if there is a dependence relation amongst the vectors v_1, \ldots, v_k for which the coefficient α_i of v_i is non-zero.

So anytime there is a viable dependence relation we can toss out a generator without changing the nature of the subspace generated. When we there are no more viable dependence relations, this procedure terminates. The final minimal set of generators are then **linearly independent** since dependence relations amongst the vectors no longer exist.

We now turn to the questions of how many generators do we end up with; does this number depend on the vectors that we start with, or on the choices we make in removing superfluous generators.

THEOREM 3.3. Let S be a subspace of a vector space V over a field \mathbb{F} . Suppose S is generated by n vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$. Let $\{\mathbf{w}_1, \ldots, \mathbf{w}_m\}$ be a set of m vectors in S with m > n. Then the vectors $\{\mathbf{w}_1, \ldots, \mathbf{w}_m\}$ are linearly dependent.

Proof. We will do a proof by induction.

Suppose n = 1. Then each element of S is of the form $\lambda \mathbf{v}_1$ for some $\lambda \in \mathbb{F}$. So there must be a choice of scalars $\lambda_1, \ldots, \lambda_m$ so that

$$\mathbf{w}_i = \lambda_i \mathbf{v}_1 \quad , \quad i = 1, \dots, m$$

But then

$$-\lambda \mathbf{v}_1 + \mathbf{w}_1 = \mathbf{0}_V$$

is a dependence relation amongst the $\mathbf{w}_1, \ldots, \mathbf{w}_m$ and so $\{w_1, \ldots, w_m\}$ are linearly dependent.

Now assume the statement is true for n = N - 1. Write each w_i , $i = 1, \ldots, m > N$, as

$$\mathbf{w}_i = \sum_{j=1}^N \alpha_{ij} \mathbf{v}_j$$

Case 1: all $\alpha_{iN} = 0_{\mathbb{F}}$. In this situation each \mathbf{w}_i lies in the span of the first $N - 1 \mathbf{v}_i$, and so the conclusion that $\{\mathbf{w}_1, \ldots, \mathbf{w}_m\}$ are linearly dependent is affirmed by the induction hypothesis.

Case 2: At least one $\alpha_{iN} \neq 0_{\mathbb{F}}$. By, if necessary, reordering the \mathbf{v}_i , we can assume that $\alpha_{1N} \neq 0_{\mathbb{F}}$. Now consider

$$\mathbf{w}_2 - \frac{\alpha_{2N}}{\alpha_{1N}} \mathbf{w}_1$$

The coefficient of v_N is this expression is, by construction, equal to $0_{\mathbb{F}}$. Similarly, the vectors

$$\mathbf{w}_3 - \frac{\alpha_{3N}}{\alpha_{1N}} \mathbf{w}_1$$

:
$$\mathbf{w}_m - \frac{\alpha_{mN}}{\alpha_{1N}} \mathbf{w}_1$$

all have 0_F component along \mathbf{v}_N . Thus, the m-1 vectors $\mathbf{w}_2 - \frac{\alpha_{2N}}{\alpha_{1N}}\mathbf{w}_1, \ldots, \mathbf{w}_m - \frac{\alpha_{mN}}{\alpha_{1N}}\mathbf{w}_1$, all belong to the subspace generated by $\mathbf{v}_1, \ldots, \mathbf{v}_{N-1}$. Since m > N implies m-1 > N-1, the induction hypothesis implies that these m-1 vectors must be linearly dependents. So there are constants β_2, \ldots, β_m , not all equal to 0_F such that

$$\beta_2 \left(\mathbf{w}_2 - \frac{\alpha_{2N}}{\alpha_{1N}} \mathbf{w}_1 \right) + \dots + \beta_m \left(\mathbf{w}_m - \frac{\alpha_{mN}}{\alpha_{1N}} \mathbf{w}_m \right) = \mathbf{0}_V$$
$$- \left(\frac{\beta_2 \alpha_{2N}}{\alpha_{1N}} + \dots + \frac{\beta_m \alpha_{mN}}{\alpha_{1N}} \right) \mathbf{w}_1 + \beta_2 \mathbf{w}_2 + \dots + \beta_m \mathbf{w}_m = 0$$

or

which is a dependence relation amongst $\{w_1, \ldots, w_m\}$ since at least one of the coefficients of the last m-1 terms must be non-zero.

COROLLARY 3.4. Suppose $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_m\}$ are two sets of generators of a subspace S and that both sets of generators are linearly independent. Then n = m.

Proof. If m > n, then we will would have more vectors in the set $\{w_1, \ldots, w_m\}$ than we have generators in set $\{v_1, \ldots, v_n\}$. By the preceding theorem, we would conclude that the set $\{w_1, \ldots, w_m\}$ must be a linearly dependent set of vectors. But that violates our hypothesis. If n > m, the a similar argument, in which the roles of the sets $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_m\}$ are switched would force us to conclude that the vectors $\{v_1, \ldots, v_n\}$ are linearly independent, in violation of our hypothesis. The only other possibility left is n = m and so the statement is proved.

Thus the number of linearly independent vectors used to generate a subspace is independent of the choice of a linearly independent set of generators. This is an important *invariant* of a subspace and the motivation for the following definition.¹

DEFINITION 3.5. The common cardinality of any linearly independent set of generators for a subspace S is called the **dimension** of S.

DEFINITION 3.6. A basis for a subspace S is a linearly independent set of generators for S.

So, the dimension of a subspace S is the number of vectors in any basis of S.

 $^{^{1}}$ A notion that depends ostensibly on some choices (in a present case the choice of a linearly independent set of generators), but which in fact is independent of the choices made, we sometimes refer to as an *invariant* of the construction.