
LECTURE 2

Subspaces and Linear Independence

Last time we defined the notion of a field F as a generalization of the set of real numbers, and the notion of
a vector space over a field F as a generalization of the vector space Rn (or any other vector space studied in
Math 3013). Today we continue to translate ideas developed in Math 3013 to the setting of a vector space
over a field F. In so doing, none of the definitions change much, all we really do is substitute F for R in the
old definitions. But we’ll proceed anyway, since it affords us an opportunity to simultaneously review the
development in Math 3013 as we substantiate the setting of Math 4063.

Definition 2.1. We say that a set S is closed under an operation * if the outcome of applying the
operation * to elements of S is another element of S.

Thus, for example, the set of real numbers is closed under addition and multiplication; because whenever
you add two real numbers you get another real number, and whenever you multiply two real numbers you
get another real number.

Definition 2.2. Let V be a vector space over a field F and let U be a subset of the elements of V . We say
that U is a subspace of V if U is closed under the operations of scalar multiplicaition and vector addition:
In other words, U is a subspace if

(1) (u ∈ U and α ∈ F) ⇒ αu ∈ U

(2) u1, u2 ∈ U ⇒ u1 + u2 ∈ U
Remark 2.3. While there are two separate conditions to check in order to confirm that a given subset is a
subspace, one can check both conditions simultaneously via

U is a subspace ⇐⇒ αu1 + βu2 ∈ U for all α, β ∈ F and all u1, u2 ∈ U

By the way, when V is a vector space over a field F, we will refer to expressions of the form α1u1 + α2u2 +
· · ·+ αkuk with α1, . . . , αk ∈ F and u1, . . . , uk ∈ V as a linear combination of elements of V .

This equivalence by the way is easy to prove; I’ll prove this statement and it’s generalization below.

Example 2.4. Let C (R) be the set of real-valued functions on the real line. Show that the subset S
consisting of functions vanishing at x = 0 is a subspace of C (R).

• We want to check that αf + βg ∈ S for any real numbers α, β and any functions f, g ∈ S. Now
for a function h (x) to belong to S simply requires h (0) = 0. So the question is does αf + βg
evaluated at 0 always equal 0?

0 =? (αf + βg) (0) = αf (0) + βg (0) = α · 0 + β · 0 = 0

So, indeed, S is a subspace of C (R).

Example 2.5. Let C (R) again be the set of real-valued functions on the real line and let T be the set of
functions whose value at x = 0 is 1. Is T a subspace of C (R)?

• Well, proceeding as before, we need to check that the function αf + βg evaluates to 1 at x = 0
whenever f, g ∈ T and α, β ∈ R. But

1 =? (αf + βg) (0) = αf (0) + βg (0) = α · 1 + β · 1 = α+ β 6= 1 in general
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So T is not a subspace of C (R).

By the way, here is a simple necessary condition for a subset S of a vector space V to be a subspace.

Proposition 2.6. If S is a subspace of a vector space V , then 0V ∈ S.

Proof. A subspace S will be closed under scalar multiplication by elements of the underlying field F, in
particular, S will be closed under scalar multiplication by 0F. But

0F · v = 0V for all v ∈ V

When v ∈ S we still have 0F · v = 0V and we also have 0V = 0F · v ∈ S because S is closed under scalar
multiplication. �

Here another prototypical example of a subspace. Let A be an n× n matrix and let S be the solution set
of Ax = 0;

S = {x ∈ Rn | Ax = 0}
Then S is a subspace of Rn.

• Indeed, suppose x,y ∈ S are solutions and α, β ∈ R. We want to show that any linear combination
of the form αx + βy is also a solution. We have

A (αx + βy) = A (αx) + A (βy)

because matrix multiplication distributes over vector addition. Then

= αAx + βAy

because matrix multiplication commutes with scalar multiplication. Then

= α0 + β0

because x,y are, by hypothesis, solutions of Ax = 0. Since any scalar muliple of the 0 vector is
the 0 vector, we reach the desired conclusion:

A (αx + βy) = 0 ⇒ αx + βy ∈ S

Since every linear combinations of two elements of S is an an element of S, S is a subspace.

Proposition 2.7. A subset S of a vector space V over a field F is a subspace if and only if every linear
combination of the form αv + βu with α, β ∈ F , v, u ∈ S is in S.

Proof.

⇒ . Suppose S is a subspace of V , α, β ∈ F, and u, v ∈ S. Then αv and βu are both in S, since
subspaces are closed under scalar multiplication. But then αv + βu ∈ S since subspaces are also closed
under vector addition.

⇐= . Suppose αv + βu ∈ S for every α, β ∈ F and every u, v ∈ S. Then we have in particular 0V ∈ S
when we specialize α = β = 0F. And then when we specialize to β = 0f we have

S 3 αv + 0Fu = αv + 0V = αv

so S is closed under scalar multiplication. Specializing to α = 1F and β = 1F we have

S ∈ αv + βu = 1Fv + 1Fu = v + u

so S is also closed under vector addition. Since S is closed under scalar multiplication and vector addition,
S is a subspace of V . �
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Below I will give also an easy corollary; primarily for the purpose of demonstrating an inductive proof. But
first let me remind you all how a proof by induction works. Suppose you have not one statement, but a
whole series of special cases to prove

P1 ⇒ Q1

P2 ⇒ Q2

P3 ⇒ Q3

...

If circumstances allow one can do do this both effectively and efficiently by employing a proof by induction.
This works as follows:

• First. prove that P1 ⇒ Q1 is true.
• Secondly, prove that if Pn ⇒ Qn is true then necessarily the next subsequent statement
Pn+r ⇒ Qn+1 is true.

If you can accomplish these two steps, you have succeeded in proving Pk ⇒ Qk for all k in {1, 2, 3, . . .}

Corollary 2.8. If S is a subspace, then any linear combination α1v1 + α2v2 + · · · + αkvk of elements of
V is also in S.

Proof. We will use proof by induction. We wil regard the intial case to prove as being

S is a subpace ⇒ α1v1 ∈ S for all α1 ∈ F and for all v1 ∈ S

and that the kth special case as being

S is a subspace ⇒ α1v1 + · · ·+ αkvk ∈ S for all α1, . . . , αk ∈ F and for all v1, . . . , vk ∈ S

The statement of the initial case is true by the definition of a subspace (the part about closure under scalar
mulitplication). This accomplishes the first step of an inductive proof.

Now are to prove that

(the truth of Pk ⇒ Qi) ⇒ (the truth of Pk+1 ⇒ Qk+1)

So assume the kth special case is true

α1v1 + · · ·+ αkvk ∈ S for all α1, . . . , αk ∈ F and for all v1, . . . , vk ∈ S

Now αk+1vk+1 is also in S for any αk+1 ∈ F and any vk+1 ∈ S. And then since both α1v1 + · · ·+ akvk ∈ S
and αk+1vk+1 ∈ S, and because the subspace S is closed under vector addition it must be that

α1v1 + · · ·+ αkvk + αk+1vk+1 ∈ S for all α1, . . . , αk, αk+1 ∈ F and for all v1, . . . , vk, vk+1 ∈ S

And so the (k + 1)
th

statement is also true. This then completes the inductive proof. �

Here is another standard construction of a subspace.

Definition 2.9. Let {v1, . . . , vk} be a set of vectors in a vector space V . Then the set

spanF (v1, . . . , vk) := {α1v1 + · · ·+ αkvk | α1, . . . , αk ∈ F}

(where the coefficients α1, . . . , αk vary over all possible element of F) is called the span of the vectors
{v1, . . . , vn}.

Proposition 2.10. The span of a set of vectors in V is a subspace of V .
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Proof.

It suffices to show that any linear combination of two elements of spanF (v1, . . . , vk) is again an element of
spanF (v1, . . . , vk). Let

u = α1v1 + · · ·+ αkvk

v = β1v1 + · · ·+ βkvk

be arbitary elements of the span, and let α and β be arbitrary eleements of F. Then

αu+ βv = α (α1v1 + · · ·+ αkvk) + β (β1v1 + · · ·+ βkvk)

= (αα1) v1 + (ββ1) v1 + · · ·+ (ααk) vk + (ββk) vk

= (αα1 + ββ1) v1 + · · ·+ (ααk + ββk) vk

∈ spanF (v1, . . . , vk)

�

This construction of a subspace arises very frequently. So frequently, we may as well introduce some
corresponding terminology.

Definition 2.11. The subspace spanF (v1, . . . , vk) is the subspace generated by vectors v1, . . . , vk. A
subspace S is said to be finitely generated whenever there exists a finite set of vectors {v1, . . . , vk} such
that S = spanF (v1, . . . , vk).

1. Linear Dependence

We now come to a fundamental idea. Just above, we have constructed subspaces by taking linear combina-
tions of vectors. On the other hand, we have also seen that when you take a linear combination of vectors
that lie within a subspace, you don’t leave a subspace. This means that whenever

vk+1 ∈ span (v1, v2, . . . , vk)

the subspace span (v1, . . . , vk, vk+1) coincides with the subspace span (v1, . . . , vk). But thinking of a vector
in span (v1, . . . , vk) as a linear combination of k+ 1 vectors is making things more complicated rather than
simpler. So if you have a subspace S = span (v1, . . . , vk) it should make matters simpler if we can reduce
the number of generators needed to produce span (v1, . . . , v,). This we can do by removing any generator
that can be expressed as a linear combination of the other generators.

Proposition 2.12. span (v1, . . . vk+1) = span (v1, . . . , vk) if and only vk+1 ∈ span (v1, . . . , vk).

Proof. Let S = span (v1, . . . , vk). An element of span (v1, . . . , vk, vk+1) is just an element of S plus a scalar
multiple of vk+1. But if vk+1 is a linear combination of v1, . . . , vk, then vk+1 and all of its scalar multiples are
also in the subspace S. Since S is closed under vector addition we conclude that S = span (v1, . . . , vk, vk+1).

On the other hand, if span (v1, . . . , vk) = span (v1, . . . , vk, vk+1) then since vk+1 itself lies in span (v1, . . . , vk, vk+1) =
span (v1, . . . , vk), vk can be written as a linear combination of the v1, . . . , vk. �

What makes this sort of situation especially problematic is that it’s not alway easy to tell (at least by
inspection alone) when one vector is expressible in terms of another. Or even which vector to toss out! For
example, if

v3 = 2v1 − v2
we also have

v2 = 2v1 − v3
and

v1 =
1

2
v2 +

1

2
v3
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Thus,

span (v1,v2, v3) = span (v1, v2) = span (v1, v3) = span (v2, v3)

The following definition is meant to democratize the ambiguity exhibited in preceding example.

Definition 2.13. A set of vectors v1, . . . , vk is said to be linearly dependent if the vectors satisfy an
equation of the form

(1) α1v1 + · · ·+ αkvk = 0

with at least one coefficient αi 6= 0. An equation of the form (1) (with at least one non-zero coefficient) is
a called a dependence relation (amongst the vectors v1, . . . , vk).

If

α1v1 + · · ·+ αkvk = 0

is a dependence relation, the stipulation that at least one coefficient, say αi, is non-zero, allows us to scalar
muliply the dependence relation by 1

αi
to get

α1

αi
v1 +

α2

αi
v2 + · · ·+ αi−1

αi
vi−1 + vi +

αi+1

αi
vi+1 + · · ·+ αk

αi
vk = 0

or

vi = −α1

αi
v1 − · · · −

αi−1

αi
vi−1 −

αi+1

αi
vi+1 − · · · −

αk
αi
vk ∈ span (v1, . . . , vi−1, vi+1, . . . , vk)

Thus, whenever we have a dependence relation amongst vectors v1, . . . , vk we can reduce the set of generating
vectors for S = span (v1, . . . , vk) by one member. The procedure is just to remove a vector that has a non-
zero coefficient in the dependence relation.

If we have lots of dependence relations then we can remove lots of generators our initial set. But eventually
this process has to terminate (the subspace generated is staying the same, we are only removing superfluous
generators). One must finally reach a point where there is no longer a viable dependence relation. That
final condition we formulate as follows.

Definition 2.14. A set of vectors v1, . . . , vk is said to be linearly independent if the only way of satisfying

α1v1 + · · ·+ αkvk = 0

is to take all the coefficients a1, . . . , ak equal to 0F .

Remark 2.15. I’d like to point out that the discussion above is kind of typical for this course in the following
sense. We started with a simple notion (a subspace) and simple way of constructing such things (taking
linear combinations of vectors). Then I pointed out that unfortunately the same subspace can produced in
lots of different ways and that it’s hard to tell when two such constructions give the same result (in other
words, it’s hard to check equalities between subspaces). So we found a simple way to make matters simpler
(tossing out superfluous vectors). But that too introduced some ambiguity (which vectors do we toss out?).
To accommodate and indeed better reflect this ambiguity we figured out the essential thing that had to
happen if we were to remove a generator without changing the subspace. That’s how we arrived at the
definition of linear independence.

What I want to point out is that the idea of linear independence is not particularly well encapsulated by
its definition (Definition 2.13). Rather to get a good grasp of the notion of linear independence you need
to keep in mind the flow of ideas from which it sprung; this grasp will improve, as we move on, when you
also keep in mind the ideas it allows you to connect.

Proposition 2.16. Let v1, v2 be two non-zero vectors in a vector space over a field F. Then {v1, v2} is a
linearly dependent set if and only if there is a scalar non-zero α ∈ F such that v2 = αv1.
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Proof.

⇒ Suppose {v1, v2} are linearly dependent. Then, by definition, there exists scalars α1, α2 ∈ F such
α1v1+α2v2 = 0V and for which at least one of α1,α2 does not equal 0F. By reordering v1 and v2 if necessary,

we can assume that α2 6= 0F. But then (α2)
−1

exists (via the field axioms) and so

(α2) −1 · (α1v1 + α2v2) = (σ2)
−1 · 0V

The right hand side easily evaluates to 0V . The left hand side evaluates to (α2)
−1
α1 + v2. So we have

(α2)
−1
α1 + v2 = 0V

Adding −
(

(α2)
−1
α1v1

)
to both sides we then get

v2 = − (α2)
−1
α1v1

Since − (α2)
−1
α1 ∈ F we have demonstrated that if {v1, v2} are linearly depedent then there is a 0F 6= α ∈ F

such that v2 = αv1.

⇐= Suppose v2 = αv1. Then adding −αv1 to both sides we have

−α1v1 + v2 = 0F

Since the coefficient of v2 in this relation can be taken to be 1F 6= 0, v1 and v2 are linearly dependent.

. �

Remark 2.17. Notice how patient I was in presenting the proof. Every little step was explained. This
was done not to insult your intelligence. Rather my purpose was two-fold. First of all, I wanted to keep
reminding you of the general setting in which we are working (vector spaces over a general field - where the
actual notions of vectors, scalar multiplication and vector addition could be pretty weird). Secondly, I tried
to leave no step unexplained so that I didn’t hide from myself a gap in the proof.


