MATH 4063-5023 Homework Set 8

1. Determine if the following matrices \mathbf{A} are diagonalizable. When \mathbf{A} is diagonalizable, provide both the matrix \mathbf{C} diagonalizing \mathbf{A} and its diagonal form \mathbf{D} (so that $\mathbf{D} = \mathbf{C}^{-1}\mathbf{A}\mathbf{C}$).

(a) $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}$ (b) $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}$ (c) $\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$

2. Consider the operator $T = \frac{d}{dx}$ acting on the vector space \mathcal{P}_2 of polynomials of degree ≤ 2 .

(a) What are the eigenvalues and eigenvectors of T?

- (b) Is the operator $\frac{d}{dx}: \mathcal{P}_2 \to \mathcal{P}_2$ diagonalizable?
- (c) What is the minimal polynomial of T?

(d) What is the direct sum decomposition of \mathcal{P}_2 appropriate for T (as in Theorem 17.17). (Hint: look at Theorem 17.19 before trying to draw conclusions.)

3. Let V_1 and V_2 be non-zero subspaces of a ector space V. Show that $V = V_1 \oplus V_2$ if and only if $V = V_1 + V_2$ and $V_1 \cap V_2 = \{\mathbf{0}\}$.

4. Let $T \in L(V, V)$ be a linear transformation such that $T^2 = \mathbf{1}_{L(V,V)}$. Prove that $V = V_+ \oplus V_-$ where $V_{\pm} = \{v \in V \mid Tv = \pm v\}$.

5. Let V be a vector space over an algebraically closed field (e.g. \mathbb{C}) and let $T \in L(V, V)$ be a linear transformation whose only eigenvalue is 0. Prove that T is nilpotent; i.e $T^n = 0$ for some positive integer n.