MATH 4063-5023 Homework Set 3

1. Test for the solvability of the following linear systems (over \mathbb{R}). If the system is solvable, then express the general solution in the form of $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_0$ where \mathbf{x}_0 is a particular solution of the given linear system and \mathbf{x}_0 is the general solution of the corresponding homogeneous linear system (see the tail end of Lecture 6).

(a)

$x_1 + x_2 + x_3$	=	8
$x_1 + x_2 + x_4$	=	1
$x_1 + x_3 + x_4$	=	14
$x_2 + x_3 + x_4$	=	14

(b)

 $2x_1 + x_2 + 3x_3 - x_4 = 1$ $3x_1 + x_2 - 2x_3 + x_4 = 0$ $2x_1 + x_2 - x_3 + 2x_4 = -1$

(c)

$$x_1 + 4x_2 + 3x_3 = 1$$

$$3x_1 + x_3 = 1$$

$$4x_1 + x_2 + 2x_3 = 1$$

(d)

$$\begin{array}{rcl} -x_1 + 2x_2 + x_3 + 4x_4 &=& 0\\ 2x_1 + x_2 - x_3 + x_4 &=& 1 \end{array}$$

2. Prove that an $n \times m$ system of homogeneous equations has a non-trivial solution if and only if the rank of the coefficient matrix is less than m.

3. Find a set of homogeneous linear equations whose solution set is the subspace of \mathbb{R}^3 generated by the vectors [2, 1, -3], [1, -1, 0] and [1, 3, -4].

4. Let S be a subspace of a vector space V. Prove that if \mathbf{p} and \mathbf{q} are vectors belonging to the hyperplane $M = H_{\mathbf{x}_0,S} = {\mathbf{x}_0 + \mathbf{s} \mid \mathbf{s} \in S}$, then the line through \mathbf{p} and \mathbf{q} lies entirely in M.

5. Find the point in \mathbb{R}^3 where the line joining the points [1, -1, 0] and [-2, 1, 1] pierces the plane $3x_1 - x_2 + x_3 = 1$.