MATH 4063-5023 Homework Set 1

1. Let \mathbb{F} be a field, and let \mathbb{F}^n denote the set of *n*-tuples of elements of \mathbb{F} , with operations of scalar multiplication and vector addition defined by

 $\begin{aligned} \lambda \cdot [\alpha_1, \dots, \alpha_n] &:= [\lambda a_1, \dots, \lambda a_n] \quad, \quad \text{for all } \lambda \in \mathbb{F} \text{ and all } [\alpha_1, \dots, \alpha_n] \text{ in } \mathbb{F}^n \\ [\alpha_1, \dots, \alpha_n] + [\beta_1, \dots, \beta_n] \quad:= [\alpha_1 + \beta_i, \dots, \alpha_n + \beta_n] \quad, \quad \text{for all } [\alpha_1, \dots, \alpha_n] \text{ and } [\beta_1, \dots, \beta_n] \text{ in } \mathbb{F}^n \end{aligned}$ Check that \mathbb{F}^n satisfies all the axioms of a vector space over \mathbb{F} .

2. Let $\mathcal{C}^{1}(\mathbb{R})$ be the set of continuous, differentiable functions on the real line with values in \mathbb{R} . Define scalar multiplication and vector addition on $\mathcal{C}(\mathbb{R})$ by

$$\begin{aligned} \left(\lambda \cdot f\right)(x) &:= \lambda f(x) \quad , \qquad \forall \; \lambda \in \mathbb{R} \quad , \quad \forall \; f \in \mathcal{C}^1\left(\mathbb{R}\right); \\ \left(f + g\right)(x) &:= f(x) + g(x) \quad , \qquad \forall \; f, g \in \mathcal{C}^1\left(\mathbb{R}\right). \end{aligned}$$

Check that $\mathcal{C}^{1}(\mathbb{R})$ satisfies the axioms for a vector space over \mathbb{R} .

3. Determine which of the following subsets are subspaces of $\mathcal{C}^{1}(\mathbb{R})$

- (a) The set of polynomial functions in $\mathbb{C}^{1}(\mathbb{R})$.
- (b) The set of all functions $f \in \mathcal{C}^1(\mathbb{R})$ such that $f\left(\frac{1}{2}\right)$ is a rational number.
- (c) The set of all $f \in \mathcal{C}^1(\mathbb{R})$ such that $f\left(\frac{1}{2}\right) = 0$. (d) The set of all $f \in \mathcal{C}^1(\mathbb{R})$ such that $\int_0^1 f(x) \, dx = 1$ (e) The set of all $f \in \mathcal{C}^1(\mathbb{R})$ such that $\int_0^1 f(x) \, dx = 0$ (f) The set of all $f \in \mathcal{C}^1(\mathbb{R})$ such that $\frac{df}{dt} = 0$.

4. Prove that a subspace (a subset of a vector space closed under vector addition and scalar multiplication) is a vector space by verifying all 8 axioms.

5. Is the intersection of two subspaces a subspace (prove your answer)?

6. Is the union of two subspaces a subspace (explain your answer)?

7. Show that a set of vectors which contains a linearly dependent set of vectors is itself a linearly dependent set of vectors.

8. Let $\{v_1, \ldots, v_n\}$ be a basis for a (non-trivial) vector space V. Show that $v_i \neq \mathbf{0}_V$ for all $i = 1, \ldots, n$.

9. Let $\{v_1, \ldots, v_k\}$ be a linearly independent set of vectors. Let

$$u = \alpha_1 v_1 + \dots + \alpha_k v_k$$
$$v = \beta_1 v_1 + \dots + \beta_k v_k$$

Prove that u = w if and only if $\alpha_1 = \beta_1, \alpha_2 = \beta_2, \dots, \alpha_k = \beta_k$.

10. Show that $\{1, x, x^2, \dots, x^n\}$ is a basis for the vector space \mathcal{P}_n of polynomials of degree $\leq n$. (Hint: just check that the definition of a basis is satisfied.)