LECTURE 20

Properties of Continuous Functions

Recall

Definition 20.1. Let $f: D \to \mathbb{R}$ and let $c \in D$. We say that f is **continuous** at c if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\begin{cases} x \in D \\ and \\ |x - c| < \delta \end{cases} \Rightarrow |f(x) - f(c)| < \varepsilon$$

If f is continuous at each point of a subset S of D, then f is said to be **continuous** on S. If f is continuous at each point of its domain D, then f is said to be a continuous function.

The goal of this lecture is to examine the how the existence of a continuous function $f: D \to \mathbb{R}$ places restrictions on the topological nature of subsets D and f(D).

EXAMPLE 20.2. Consider the function $f:(0,1)\to\mathbb{R}$ given by $f(x)=\frac{1}{x}$. This is function is continuous at each point of its domain. But although its domain is bounded, its range $f(D)=(0,+\infty)$ is clearly unbounded.

The point of this example is to provide contrast with the following theorem.

Theorem 20.3. Let D be a compact set and suppose that $f: D \to \mathbb{R}$ is a continuous. Then f(D) is compact.

Proof. By the Heine-Borel theorem it suffices to show that f(D) is closed and bounded.

Lemma 20.4. Every bounded sequence has a convergent subsequence.

Suppose that f(D) is not bounded. Then for each $n \in \mathbb{N}$ there exists a point $x_n \in D$ such that $|f(x_n)| > n$. Since D is bounded, the Lemma implies the sequence (x_1, x_2, \ldots) in D will have convergent subsequence (x_{n_k}) and hence an accumulation point x_o . Since D is also closed such an accumulation point must lie in D. Therefore, f is continuous at x_0 . And so by Theorem 21.2 $f(x_{n_k})$ will converge to $f(x_0)$. In particular, $(f(x_{n_k}))$ will be bounded. But this contradicts the hypothesis that

$$|f(x_{n_k})| > n_k > k$$
 for all $k \in N$

We now show that f(D) must be closed. Let (y_n) be a convergent sequence in f(D) and let $y = \lim y_n$. If suffices to show that $y \in f(D)$. Since $y_n \in f(D)$ for each n, for each y_n we can choose an $x_n \in D$ such that $y_n = f(x_n)$. Since D is closed and bounded, there will exist a subsequence (x_{n_k}) of (x_n) that converges to some point x_0 in D. Since f is continuous at x_0 we'll have

$$f(c) = \lim_{x \to c} f(x) = \lim (f(x_{n_k}))$$
$$= \lim (y_{n_k})$$
$$= y$$

Thus, $y = f(c) \in f(D)$ and so f(D) contains its accumulation points so f(D) is compact.

COROLLARY 20.5. Let D be a compact subset of \mathbb{R} and suppose that $f: D \to \mathbb{R}$ is continuous. Then f assumes a minimum and maximum values on D. That is to say, there exists points $x_1, x_2 \in D$ such that

$$f(x_1) \le f(x)$$
 for all $x \in D$
 $f(x_2) \ge f(x)$ for all $x \in D$

Proof. Since f is continuous and D is compact, by the preceding theorem f(D) is compact; hence f(D) is closed. Hence f(D) contains its boundary points. Hence, f(D) has a minimal and a maximal element. Let

$$y_1 = \min f(D)$$

 $y_2 = \max f(D)$

Since $y_1 \in f(D)$, there exists an $x_1 \in D$ such that $y_1 = f(x_1)$. Similarly, there exists an $x_2 \in D$ such that $y_2 = f(x_2)$. Now we have

$$f(x_1) = y_1 \le y(x) \le y_2 = f(x_2)$$
 for all x in D

and the proposition is proved. ■

LEMMA 20.6. Let $f:[a,b] \to \mathbb{R}$ be continuous and suppose that f(a) < 0 < f(b). Then there exists a point c in (a,b) such that f(x) = 0.

Proof. Set

$$S = \{ x \in [a, b] \mid f(x) \le 0 \}$$

This set is non-empty since $a \in S$ and it is bounded since $x \in S \Rightarrow |x| \le \max\{|a|, |b|\}$. Thus, by the Completeness Property of the Reals, S has a least upper bound. Set

$$c = \sup(S)$$

I claim f(c) = 0.

• Suppose f(c) < 0. Then $V = N\left(f(c), \frac{f(c)}{2}\right)$ will be a neighborhood of f(c) such that every element of V is less than zero. Since f is continuous, to V there must correspond a neighborhood $U = N\left(c, \varepsilon\right)$ of c such that

$$x \in U \implies f(x) \in V$$

(Theorem 21.2). But then

$$f(c + \frac{\varepsilon}{2}) < 0$$

and so

$$c + \frac{\varepsilon}{2} \in S$$

and so c is not an upper bound of set S.

• Suppose f(c) > 0. Then $W = N\left(f(c), \frac{f(c)}{2}\right)$ will be a neighborhood of f(c) such that every element of V is greater zero. Since f is continuous, to W there must correspond a neighborhood $U' = N\left(c, \varepsilon'\right)$ of c such that

$$x \in U' \implies f(x) \in W$$

In particular, $x=c-\frac{\varepsilon'}{2}\in U'$ and so for all x between $c-\frac{\varepsilon}{2}$ and c

$$f(x) > 0 \implies x \notin S$$

and so c can not be the **least** upper bound for S.

• We conclude that if $c = \sup(S)$ then f(c) = 0. Since $\sup(S)$ is guaranteed to exist, we are done.

THEOREM 20.7 (Intermediate Value Theorem). Suppose that $f:[a,b] \to \mathbb{R}$ is continuous. Then if k is any real number between f(a) and f(b), there exists a point $c \in [a,b]$ such that f(c) = k

Proof. Suppose

$$f(a) < k < f(b)$$

Consider the function $g:[a,b]\to\mathbb{R}$ defined by

$$g(x) = f(x) - k.$$

Note that g is continuous since f is continuous. We also have

$$g(a) < 0 < g(b)$$

and so, by the preceding lemma, there exists a $c \in [a, b]$ such that g(c) = 0. But then this implies

$$f(c) = k$$
.

Suppose

$$f(b) < k < f(a)$$

Consider the function $h:[a,b]\to\mathbb{R}$ defined by

$$h(x) = k - f(x).$$

Note that h is continuous since f is continuous. We also have

and so, by the preceding lemma, there exists a $c \in [a, b]$ such that h(c) = 0. But then this implies

$$f(c) = k$$
.