LECTURE 20

Properties of Continuous Functions

Recall
DEFINTTION 20.1. Let f: D — R and let ¢ € D. We say that f is continuous at c if for every ¢ > 0 there
exists a § > O such that
zeD
and = |f(z)—fle) <e
|z —c| <6

If f is continuous at each point of a subset S of D, then f is said to be continuous on S. If f is continuous
at each point of its domain D, then f is said to be a continuous function.

The goal of this lecture is to examine the how the existence of a continuous function f : D — R places
restrictions on the topological nature of subsets D and f(D).

ExaMPLE 20.2. Consider the function f : (0,1) — R given by f(z) = % This is function is continuous
at each point of its domain. But although its domain is bounded, its range f(D) = (0,4o00) is clearly
unbounded.

The point of this example is to provide contrast with the following theorem.

THEOREM 20.3. Let D be a compact sel and suppose that f : D — R is a continuous. Then f(D) is
compacl.

Proof. By the Heine-Borel theorem it suffices to show that f(D) is closed and bounded.
LEMMA 20.4. Every bounded sequence has a convergent subsequence.

Suppose that f(D) is not bounded. Then for each n € N there exists a point x,, € D such that |f(z,)| > n.
Since D is bounded, the Lemma implies the sequence (x1,2g,...) in D will have convergent subsequence
(2, ) and hence an accumulation point z,. Since D is also closed such an accumulation point must lie in
D. Therefore, f is continuous at zg. And so by Theorem 21.2 f (x,, ) will converge to f (zo). In particular,
(f (zy,)) will be bounded. But this contradicts the hypothesis that

If (@n,)| > np > kforall ke N

We now show that f(D) must be closed. Let (y,,) be a convergent sequence in f(D) and let y = limy,. If
suffices to show that y € f(D). Since y,, € f(D) for each n, for each y,, we can choose an z,, € D such that
Yn = f (xn). Since D is closed and bounded, there will exist a subsequence (z,, ) of (x,) that converges to
some point zg in D. Since f is continuous at xg we’ll have

O = lm f(@) =l (f (z)
= lim(y’ﬂk)
=y

Thus, y = f(¢) € f(D) and so f(D) contains its accumulation points so f(D) is compact.
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COROLLARY 20.5. Let D be a compact subset of R and suppose that f : D — R is continuous. Then f
assumes a minimum and maximum values on D. That is to say, there exisls poinls x1,x2 € D such that

flr) £ flx) forallze D
flxa) = flx) forallze D

Proof. Since f is continuous and D is compact, by the preceding theorem f(D) is compact; hence f(D) is
closed. Hence f(D) contains its boundary points. Hence, f(D) has a minimal and a maximal element. Let

y1 = minf(D)
y2 = max f(D)

Since y; € f(D), there exists an z1 € D such that y; = f (z1). Similarly, there exists an z2 € D such that
y2 = f (r2). Now we have

flz1)=y1 <y(z)<ys=f(xg) forallzin D
and the proposition is proved.
LEMMA 20.6. Let f : [a,b] — R be continuous and suppose that f(a) < 0 < f(b). Then there exists a point

?

¢ in (a,b) such that f(x) =0.

Proof. Set
S={zela]| f(z) <0}

This set is non-empty since @ € S and it is bounded since z € S = |z| < max {|a|,|b|}. Thus, by the
Completeness Property of the Reals, S has a least upper bound. Set

¢ = sup (9)
I claim f(c) =0.

e Suppose f(c) < 0. Then V=N (f(c)7 %51) will be a neighborhood of f(c) such that every element

of V is less than zero. Since f is continuous, to V there must correspond a neighborhood U = N (¢, ¢)
of ¢ such that

zelU = flx)eV
(Theorem 21.2). But then

and so

€
—€8
C—|—2€

and so ¢ is not an upper bound of set S.
e Suppose f(¢) > 0. Then W =N (f(c)7 %52) will be a neighborhood of f(c) such that every element

of V is greater zero. Since f is continuous, to W there must correspond a neighborhood U’ = N (¢, €’)
of ¢ such that

zelU = flz)ew

In particular, x = ¢ — % € U’ and so for all x between ¢ — § and ¢

flx)>0 = z¢8

and so ¢ can not be the least upper bound for S.
e We conclude that if ¢ = sup (9) then f(c) = 0. Since sup(S5) is guaranteed to exist, we are done.
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THEOREM 20.7 (Intermediate Value Theorem). Suppose thatl f : [a,b] — R is continuous. Then if k is any
real number between f(a) and f(b), there exists a point ¢ € [a,b] such that f(c) =k

Proof. Suppose

fla) <k < f(0)
Consider the function ¢ : [a,b] — R defined by
g(x) = f(x) — k.

Note that g is continuous since f is continuous. We also have
g(a) <0 <g(b)
and so, by the preceding lemma, there exists a ¢ € [a, b] such that g(c) = 0. But then this implies
fle) =k.
Suppose
1) <k < f(a)
Consider the function A& : [a,b] — R defined by
h(z) =k — f(=).
Note that A is continuous since f is continuous. We also have
h(b) <0< h(a)
and so, by the preceding lemma, there exists a ¢ € [a, b] such that h(c) = 0. But then this implies
fle) =k.



