LECTURE 19

Continuous Functions

DEFINITION 19.1. Let $f: D \to \mathbb{R}$ and let $c \in D$. We say that f is **continuous** at c if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$\left. \begin{array}{c} x \in D \\ and \\ |x - c| < \delta \end{array} \right\} \quad \Rightarrow \quad |f(x) - f(c)| < \varepsilon$$

If f is continuous at each point of a subset S of D, then f is said to be **continuous** on S. If f is continuous at each point of its domain D, then f is said to be a continuous function.

Remark 19.2. Note that the point c need not be an accommulation point. And so continuity of f at c is not quite the same as saying

$$\lim_{x \to c} f(x) = f(c)$$

(simply because the definition of the left hand side requires that c be an accumulation point). On the other hand, if $c \in D$ but c is not an accumulation point of D, then a function $f:D \to \mathbb{R}$ will always be continuous at c. Because in this case, c will be an isolated point of D and so it will always be possible to find a $\delta > 0$ such that

$$\left. \begin{array}{c} x \in D \\ \text{and} \\ |x - c| < \delta \end{array} \right\} \quad \Rightarrow \quad x = c \quad \Rightarrow \quad |f(x) - f(c)| = 0$$

THEOREM 19.3. Let $f: D \to \mathbb{R}$ and let $c \in D$. Then the following conditions are equivalent.

- (a) f is continuous at c.
- (b) If (x_n) is a sequence in D converging to c, then $\lim_{n\to\infty} f(x_n) = f(c)$.
- (c) For every neighborhood V of f(c) there exists a neighborhood U of c such that $f(U \cap D) \subseteq V$.

Furthermore, if c is an accumulation point of D, then the above are equivalent to

(d) f has a limit at c and $\lim_{x\to c} = f(c)$.

Proof.

• First suppose that c is an isolated point of D. In the remark that followed the definition of a continuous function we should that a function is always continuous at isolated points within its domain. So if c is an isolated point of D, (a) is always true. We now show that (c) is also always true in this case. For if c is an isolated point of D, then there exists a neighborhood $U = N(c, \delta)$ of c such that

$$U \cap D = \{c\}$$

But then

$$f(U \cap D) = f(\{c\}) = \{f(c)\}\$$

which certainly lies within any neighborhood of f(c). To see that (b) must also be true when c is an isolated point, let (x_n) be a sequence in D converging to c. Then there exists an N such that

$$n > N \Rightarrow |x_n - c| < \delta \Rightarrow x_n \in U \cap D$$

 $\Rightarrow x = c$
 $\Rightarrow f(x_n) - f(c) = 0$
 $\Rightarrow |f(x_n) - f(c)| < \varepsilon \text{ for all } n$

for any $\varepsilon > 0$. So then $\lim_{n \to \infty} f(x_n) = f(c)$.

• Now assume c is an accumulation point of D. Then (a) \iff (d) is the definition of continuity at c, (d) \iff (c) is Theorem 20.2, and (d) \iff (b) is essentially Theorem 20.8.

THEOREM 19.4. Let $f: D \to \mathbb{R}$ and let $c \in D$. Then f is discontinuous at c if and only if there exists a sequence (x_n) in D such that (x_n) converges to c but the sequence $(f(x_n))$ does not converge to f(c).

Theorem 19.5. Let f and g be functions from D to \mathbb{R} and let $c \in D$. Suppose that f and g are continuous at c. Then

- 1. (f+g) is continuous at c.
- 2. (fg) is continuous at c.
- 3. (f/g) is continous at c provided that $g(c) \neq 0$.

THEOREM 19.6. Let $f: D \to \mathbb{R}$ and $g: E \to \mathbb{R}$ be functions such that $f(D) \subseteq E$. If f is continous at a point $c \in D$ and g is continous at the point f(c), then the composed function $g \circ f: D \to \mathbb{R}$ is continuous at c.

Proof. (Homework problem).