LECTURE 18

Limits of Functions

DEFINITION 18.1. Let f : D — R and let ¢ be an accumulation point of D. We say that a real number L is
a limit of f at c if for each ¢ > 0 there exists a 6 > 0 such that

z€D and O0<|r—c/<é = |f(x)-L|l<e
NoTtaTioN 18.2. We write
lim f(z) =1L

to indicate that L is the limit of f at c.

REMARK 18.3. The definition effectively says that if lim, . f(z)=L we can make the values of f as close as
we like to L by stipulating that z is sufliciently close to ¢. Note, however, that the value of f precisely at the
point ¢ is irrelevant. It is important to understand that the limit of a function is condition on the behavior
of a function in a deleted neighborhood of a point, rather than a condition on its value at a particular point.

EXAMPLE 18.4. Let f : R — R be the function defined by
9 .
=% a1
I claim lim,_.; f(z) = 1 despite the fact that f(1) = 0. To see this, let ¢ be an arbitrary positive number.
We have
lt—1] <6 =axe€(l—-6146) andz#1
(1-6)2% < f(z) < (1+6)°
2 —25< flx)—1<8 426
|f(x) — 1] < 6% 426

A A

We now choose 6 so that
264+ 6% <e
e.g., solve 6% + 26 — e = 0 to get

52-2:':\2/44_45:@_1

Then we’ll have
O<|lzr—1<é = |fx)—1]<&®+26=¢
and so

lim f(z) =1

z—1

THEOREM 18.5. Let f : D — R and let ¢ be an accumulation point of D. Then limy_,. f(x) = L if and
only if for each neighborhood V' of L there exists a deleted neighborhood U of ¢ such that f (UN D) CV.

THEOREM 18.6. Let f : D — R and let ¢ be an accumulation point of D. Then limy_,. f(x) = L if and
only if for every sequence (sy,) in D\{c} that converges to ¢ we have lim (f (s,)) = L.
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Proof.

= Suppose that lim,_.. f(z) = L and let (s,,) be sequence in D\{c} such that lim s,, = ¢. By the definition
of the limit of a function, given any ¢ > 0 there exists a § > 0 such that 0 < |z —¢| < § implies that
|f(z) — L] < e. Also since limy,_.o $n = ¢, there exists an N such that |s,, — ¢| < §. Since each s, # ¢ we
have

n>N = 0<|s,—¢|<$é
and since each each s, € D, f(s,) is defined for each n, hence
n>N = 0<|s,—c|<é = |f(sa)—L|<e
S0
lim f(sn) =L

n—oo

<= We want to show that if lim f(s,) = L for every sequence (s,) in D\{c} that converges to ¢, then L is
the limit of f at ¢. We shall prove instead the contrapositive of this proposition:

e If L is not the limit of f at ¢, then there is a sequence (s,) € D\{c} such that lim (s,) = L.

Since L # lim,_,. f(z), there exists an ¢ > 0 such that for every § > 0 there must exists an © € D such that
O<lz—¢c <6 = |f(x)—L|>c¢
1 1

=,... we obtain corresponding choices of x, z1,Z2,... ,Zpn,... € D such

Setting, successively 6 =1,3,... , 7,

that

1
0< |y, —¢ <=
n

for all n € N and
) — L]z

for all n € N. Setting s,, = x,, we obtain a sequence of points of D\{c} that converges to ¢ but for which
tim £ (s0)] # T

And so the contrapositive proposition is proved.

CoOROLLARY 18.7. If f: D — R and ¢ is an accumulalion point of D, then f can have only one limit at c.

THEOREM 18.8. Let f: D — R and let ¢ be an accumulation point of D. Then the following statements
are equivalent:

1. f does not have a limit at c.
2. There exisls a sequence (sy) in D with each s, # ¢ such that (s,) converges to ¢ but (f (sy)) is not
convergent in R.

Proof. (Homework)

DEFINITION 18.9. Let f and g be functions from D to R. We define the sum f + g to be the function from
D to R defined by

(f+9)(x) = f(z) +9(2)
We define the product fg to be the function from D to R defined by
(f9) (x) = f(z)g(x)
If k€ R, we define the multiple kf to be the function from D to R defined by
(kf) () = kf(x)
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If g(x) £ 0 for all x € D, we define the quotient f/g to be the function from D to R defined by
(f/9) (x) = f(z)/9()

THEOREM 18.10. Let f and g be functions from D to R and let ¢ be an accumulation point of D. Let k € R
and suppose

lim f(x) =L and limg(x)=M

then
lim (f+g) = L+M
lim (fg) = LM
lim (kf) = KL

Furthermore, if g () #0 for allz € D and M # 0, then
lim (f/g) = L/M

1. One Sided Limits

It happens often that the domain D of a function is a open interval and one is interested in the behavior of
the function as z approaches the boundary point of the interval from one side only. We sometimes indicate
this by writing
to indicate a limit of a function where the domain of the function has ¢ as a left-most boundary point (e.g.
D = (¢,4+00)). Similarly,
lim f(x)

r—c
indicates a limit where the domain D of f is bounded on the right by ¢ (e.g. D = (—00,¢)). You can thing
of lim, .+ f(x) and lim, .- f(x) as, respectively, the limits of f as x approaches ¢ from the, respectively,
positive side and negative side.



