
LECTURE 12

The Completeness Axiom, Cont’d

Axiom 12.1 (The Completeness Axiom). Every non-empty subset S of R that is bounded from above has a
least upper bound sup(S) ∈ R.

Theorem 12.1. Every non-empty subset S of R that is bounded from below has a greatest lower bound
inf S.

Proof. Let T be the set {−s | s ∈ S}. Since S is bounded from below there is an m ∈ R such that m ≤ s
for all s ∈ S. This implies −s ≤ −m for all s ∈ S and so t ≤ −m for all t ∈ T . So T is bounded from above,
hence by the Completeness Axiom, sup T exists. Let u = sup T . We shall show that −u = inf S.

More precisely, we shall show that

−u ≤ s , ∀ s ∈ S(12.1)

and that

t ≤ s , ∀s ∈ S ⇒ t ≤ −u .(12.2)

Now by definition, since u is the least upper bound of T ,

−s ≤ u , ∀ s ∈ S(12.3)

and

−s ≤ q , ∀ s ∈ S ⇒ u ≤ q(12.4)

Now from Theorem 3.2 (i) we know (12.3) is equivalent to (12.1). Setting q = −t, (12.4) reads

−s ≤ −t , ∀ s ∈ S ⇒ u ≤ −t

or, using Theorem 3.4 (i) again,

t ≤ s , ∀ s ∈ S ⇒ t ≤ −u

which is precisely (12.2). �

Theorem 12.2 (The Archimedian Property of R). The set N of natural numbers is unbounded from above
in R.

Proof. (Proof by Contradiction). Suppose N is bounded from above in R. Then by the Completeness
Axiom, N has a least upper bound m ∈ R. This implies that m−1 is not an upper bound for N (since there
can be no upper bound smaller than m), hence the must be an element n ∈ N such that

m− 1 < n

But if n ∈ N then n+1 ∈ N and so adding 1 to both sides of the above inequality yields

m =m− 1 + 1 < n+ 1 ∈ N

so m can not be an upper bound for N (let alone the least upper bound). We conclude that m = sup (N)
does not exist.

Theorem 12.3. The following statements are equivalent to the Archimedian Property of R.

(1) For each z ∈ R, there exists n ∈ N such that n > z.
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(2) If x > 0 and for each y ∈ R, there exists an n ∈ N such that nx > y.
(3) For each x > 0, there exists n ∈ N such that 0 < 1

n
< x.

Proof.

(Archimedian Property ⇒ 1). Suppose (1) is false. Then there exists a z ∈ R, such that no n ∈ N is such
that n > z; i.e., n ≤ z for all n ∈ N, i.e. N has an upper bound in R. Hence the Archimedian Property is
false. Thus, the contrapositive of (Archimedian Property ⇒ 1) is proven.

(1 ⇒ 2). Let z = y/x. Then, if (1) is true, there exists n ∈ N such that n > y

x
, or (using that fact that

x > 0) that nx > y.

(2 ⇒ 3). Suppose (2) is true. Then setting y = 1 we know there exists n such that nx > 1. Multiplying
both sides of this last inequality by 1/n we have 1

n
< x. Also, 0 < 1

n
since if it were false, then 1

n
≤ 0. And

this last ineqality when multiplied by the postive number n2 would yield n ≤ 0 which would mean that n
was not a positive integer.

(3 ⇒ Archimedian Property). Suppose that N is bounded above by some real number m; i.e., n < m for
all n ∈ N. Then

1

m
<

1

n
∀n ∈ N

which contradicts (3) (because there’d be no 1/n between 0 and 1
m
. Thus the compositive of (3 ⇒ Archi-

median Property) is proven.

Theorem 12.4. (The Denseness of Q) If a, b ∈ R and a < b, then there is a rational number r such that
a < r < b.

Proof. It suffices to show that there exist integers m and n > 0 such that

na < m < nb .

Since 0 < b − a, the Statement (2) of the preceding theorem tells us that there exists an n ∈ N such that

1 < n(b− a)

or

an+1 < bn .

At this point it seems obvious that there is an integer lying between an and bn. Rather than make a
plausibility argument, we shall provide an explicit construction of such an integer.

By the Archimedean Property again, there also exists positive integers k′, k′′ such that

|an| < k′ , |bn| < k′′ .

Set

k = max{k′, k′′} .

Then

−k < an < bn < k .

The set

{j ∈ Z | −k < j < k and an < j}

is finite and nonempty. Set

m =min {j ∈ Z | −k < j < k and an < j}

so that

an < m , but m− 1 ≤ an .
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Then we have

m = (m− 1) + 1 ≤ an+ 1 < bn .

Now we have found an m ∈ Z such that

an < m < bn .
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