LECTURE 12

The Completeness Axiom, Cont'd

AXIOM 12.1 (The Completeness Axiom). Every non-empty subset S of \mathbb{R} that is bounded from above has a least upper bound $\sup(S) \in \mathbb{R}$.

THEOREM 12.1. Every non-empty subset S of \mathbb{R} that is bounded from below has a greatest lower bound inf S.

Proof. Let T be the set $\{-s \mid s \in S\}$. Since S is bounded from below there is an $m \in \mathbb{R}$ such that $m \leq s$ for all $s \in S$. This implies $-s \leq -m$ for all $s \in S$ and so $t \leq -m$ for all $t \in T$. So T is bounded from above, hence by the Completeness Axiom, sup T exists. Let u = sup T. We shall show that -u = inf S.

 $-u \leq s$, $\forall s \in S$

More precisely, we shall show that

(12.1)

and that

(12.2) $t \le s$, $\forall s \in S \implies t \le -u$.

Now by definition, since u is the least upper bound of T,

$$(12.3) -s \le u , \quad \forall \ s \in S$$

 and

$$(12.4) -s \le q \quad , \quad \forall \ s \in S \quad \Rightarrow \quad u \le q$$

Now from Theorem 3.2 (i) we know (12.3) is equivalent to (12.1). Setting q = -t, (12.4) reads

 $-s \leq -t$, $\forall s \in S \Rightarrow u \leq -t$

or, using Theorem 3.4 (i) again,

 $t \leq s$, $\forall s \in S \Rightarrow t \leq -u$

which is precisely (12.2).

THEOREM 12.2 (The Archimedian Property of \mathbb{R}). The set \mathbb{N} of natural numbers is unbounded from above in \mathbb{R} .

Proof. (Proof by Contradiction). Suppose \mathbb{N} is bounded from above in \mathbb{R} . Then by the Completeness Axiom, \mathbb{N} has a least upper bound $m \in \mathbb{R}$. This implies that m-1 is not an upper bound for \mathbb{N} (since there can be no upper bound smaller than m), hence the must be an element $n \in \mathbb{N}$ such that

$$m - 1 < r$$

But if $n \in \mathbb{N}$ then $n + 1 \in \mathbb{N}$ and so adding 1 to both sides of the above inequality yields

$$m = m - 1 + 1 < n + 1 \in \mathbb{N}$$

so m can not be an upper bound for \mathbb{N} (let alone the least upper bound). We conclude that $m = \sup(\mathbb{N})$ does not exist.

THEOREM 12.3. The following statements are equivalent to the Archimedian Property of \mathbb{R} .

(1) For each $z \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > z.

- (2) If x > 0 and for each $y \in \mathbb{R}$, there exists an $n \in \mathbb{N}$ such that nx > y.
- (3) For each x > 0, there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < x$.

Proof.

(Archimedian Property \Rightarrow 1). Suppose (1) is false. Then there exists a $z \in \mathbb{R}$, such that no $n \in \mathbb{N}$ is such that n > z; i.e., $n \leq z$ for all $n \in \mathbb{N}$, i.e. \mathbb{N} has an upper bound in \mathbb{R} . Hence the Archimedian Property is false. Thus, the contrapositive of (Archimedian Property \Rightarrow 1) is proven.

 $(1 \Rightarrow 2)$. Let z = y/x. Then, if (1) is true, there exists $n \in \mathbb{N}$ such that $n > \frac{y}{x}$, or (using that fact that x > 0) that nx > y.

 $(2 \Rightarrow 3)$. Suppose (2) is true. Then setting y = 1 we know there exists n such that nx > 1. Multiplying both sides of this last inequality by 1/n we have $\frac{1}{n} < x$. Also, $0 < \frac{1}{n}$ since if it were false, then $\frac{1}{n} \leq 0$. And this last inequality when multiplied by the postive number n^2 would yield $n \leq 0$ which would mean that n was not a positive integer.

 $(3 \Rightarrow \text{Archimedian Property})$. Suppose that \mathbb{N} is bounded above by some real number m; i.e., n < m for all $n \in \mathbb{N}$. Then

$$\frac{1}{m} < \frac{1}{n} \qquad \forall n \in \mathbb{N}$$

which contradicts (3) (because there'd be no 1/n between 0 and $\frac{1}{m}$. Thus the compositive of (3 \Rightarrow Archimedian Property) is proven.

THEOREM 12.4. (The Denseness of \mathbb{Q}) If $a, b \in \mathbb{R}$ and a < b, then there is a rational number r such that a < r < b.

Proof. It suffices to show that there exist integers m and n > 0 such that

Since 0 < b - a, the Statement (2) of the preceding theorem tells us that there exists an $n \in \mathbb{N}$ such that 1 < n(b - a)

or

$$an+1 < bn$$

At this point it *seems* obvious that there is an integer lying between an and bn. Rather than make a plausibility argument, we shall provide an explicit construction of such an integer.

By the Archimedean Property again, there also exists positive integers k', k'' such that

$$|an| < k' \qquad , \qquad |bn| < k''$$

 \mathbf{Set}

$$k = max\{k', k''\}$$

Then

$$-k < an < bn < k \quad .$$

The set

$$\{j \in \mathbb{Z} \mid -k < j < k \text{ and } an < j\}$$

is finite and nonempty. Set

 $m = \min\{j \in \mathbb{Z} \mid -k < j < k \text{ and } an < j\}$

so that

$$an < m$$
, but $m - 1 \le an$.

Then we have

$$m = (m - 1) + 1 \le an + 1 < bn$$
.

Now we have found an $m\in\mathbb{Z}$ such that

$$an < m < bn$$
 .