$\rm LECTURE \ 10$

Fields and Ordered Fields

Recall that an ordered field is a F together with a binary relation \leq satisfying the following axioms:

- O1. Given $a, b \in F$, then either $a \leq b$ or $b \leq a$.
- O2. If $a \leq b$ and $b \leq a$, then a = b.
- O3. If $a \leq b$ and $b \leq c$, then $a \leq c$.
- O4. If $a \leq b$, then $a + c \leq b + c$.
- O5. If $a \leq b$ and $0 \leq c$, then $ac \leq bc$.

In the theorem below we use the notation $a \prec b$ to mean $a \preceq b$ and $a \neq b$.

THEOREM 10.1. If F is an ordered field is an ordered field and $a, b, c \in F$, then:

(i) If a ≤ b, then -b ≤ -a.
(ii) If a ≤ b and c ≤ 0, then bc ≤ ac.
(iii) If 0 ≤ a and 0 ≤ b, then 0 ≤ ab.
(iv) 0 ≤ a² for all a ∈ F.
(v) 0 ≺ 1.
(vi) if 0 ≺ a, then 0 ≺ a⁻¹.
(vii) if 0 ≺ a ≺ b, then 0 ≺ b⁻¹ ≺ a⁻¹.

Taking $F = \mathbb{Q}$ and \leq to coincide with the the usual numerical inequality \leq , the above properties should seem quite elementary. However, in our context (the *axiomatic development* of number fields) these statements are properties which must first be proved before they can be employed.

(i) Suppose that $a \leq b$. Then by O4 we have

$$a + ((-a) + (-b)) \leq b + ((-a) + (-b))$$

or

$$-b \preceq -a$$
 .

(ii) If $c \leq 0$, then

 $0=c+(-c) \preceq 0-c=-c$

by (i). So $0 \leq -c$. If $a \leq b$, then by O5 we have

$$a(-c) \preceq b(-c) \quad ,$$

or

 $-ac \preceq -bc$.

Again by (i) we have

 $bc \preceq ac$.

4

(iii) If we put a = 0 and apply Axiom O5 we obtain

 $0 \leq b \text{ and} 0 \leq c \Rightarrow 0 \leq bc$.

Except for the notation, this precisely statement (iii).

- (iv) For any $a \in F$, either $a \leq 0$ or $0 \leq a$ by O1. If $0 \leq a$, then $0 \leq a^2$ by (iii).
- If $a \leq 0$, then $0 \leq -a$ by (i) and so $0 \leq (-a)^2$ by (iii). But by statement (iv) of Theorem 3.1, $(-a)(-a) = a^2$, hence $0 \leq a^2$.
- (v) Well, $0 \prec 1$ means that $0 \preceq 1$ and $0 \neq 1$. Now $0 \neq 1$ is certainly true; since otherwise Axiom M3 and statement (ii) of Theorem 3.1 would contradict each other. (We assume the field F does consists of more than one element.) To see that $0 \preceq 1$, we simply apply Axiom M3 and statement (iv) above to the case when a = 1.

$$0 \leq 1^2 = 1 \cdot 1 = 1$$

(vi) Suppose that $0 \prec a$; i.e $0 \preceq a$ and $0 \neq a$. If $a^{-1} \preceq 0$ then by (i) we have $0 \preceq (-a^{-1})$, and so by (iii) $0 \preceq a(-a^{-1}) = -1$.

But then (i) implies

$$1 \leq -0 = 0$$

which contradicts (v). Hence we cannot have $a^{-1} \leq 0$; consequently $0 \prec a^{-1}$.

(vii) Assume $0 \prec a \prec b$. In view of (vi) we need only show that $b^{-1} \prec a^{-1}$. But since $a \neq b$, we know $a^{-1} \neq b^{-1}$; for if $a^{-1} = b^{-1}$, then $1 = a^{-1}a = b^{-1}a$, so $b = bb^{-1}a = a$. So we really only need to show $b^{-1} \preceq a^{-1}$.

Since $0 \prec a \prec b$, we have, in particular, $0 \preceq a$ and $0 \preceq b$, hence $0 \preceq ab$ by (iii). In fact $0 \prec ab$ by Statement (vi) of Theorem 3.1. But then $0 \prec (ab)^{-1}$ by (vi). We now apply Axiom 05 with $c = (ab)^{-1}$.

$$a(ab)^{-1} \preceq b(ab)^{-1}$$

The statement now follows from the identity

$$(ab)^{-1} = a^{-1}b^{-1} \quad .$$