
LECTURE 8

Cardinality

In this lecture we shall discuss the relative size of sets. If S and T are sets with only a finite number of
elements then this notion of relative size is straight-forward, the set S is the same size as the set T if it has
the same number of elements and S is larger than the set T if S has more elements than T . If, however, S
and T are sets with infinite numbers of elements then the notions of equivalent and relative sizes are a bit
subtler.

We begin by stating a definition that tells us when two sets (infinite or finite) are the same size.

Definition 8.1. Two sets S and T are equinumerous if there exists a bijection from S to T .

Theorem 8.2. Let F denote any family of sets, The relation

S ∼ T ⇐⇒ S and T are equinumerous

is an equivalence relation on F .

The proof of this is easy, and will be assigned as homework.

We shall use the notation S ∼ T to indicate that S and T are equinumerous. Since this is an equivalence
relation on any family F of sets, it partitions F up into disjoint equivalence classes. With each of these
equivalence classes we shall associate a cardinal number indicating the size of the sets in that equivalence
classs. This is done as follows.

Notation 8.3. For n ∈ N, Let In denote the set of integers between 1 and n:

In = {1, 2, 3, . . . , n}

Definition 8.4. A set S is said to be finite if S = {} or if there exists a natural number n, and a bijection
f : In → S. If S is finite, we say that the cardinal number (or cardinality) of S is 0 if S = {}, or n
if the bijection is from In to S.If no such bijection exists we say that S is infinite,and that the cardinal
number of S is transfinite.

Definition 8.5. A set S is denumerable if there exists a bijection f : N→ S.

Definition 8.6. If a set is finite or denumerable, then we say that the set is countable.

Remark 8.7. If a set S is countable, then there either exists a bijection from In to S or there exists a
bijection from N to S. Such a bijection (in either case) allows us to create a listing of the elements of S:

S = {f(1), f(2), f(3), . . . }

Notation 8.8. The cardinal number of a denumberable set is denoted by ℵ0

Example 8.9. Show that the cardinality of the set of integers is ℵ0.

As usual we denote by Z, the the set of integers, and by N, the set of natural numbers . Then it is easy to
verify that the map

f : N→ Z n 
→

{
n
2

if n is even
−n+1

2
if n is odd

is a bijection. Thus,. Z ∼ N, and so the cardinality of Z is ℵ0.
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Lemma 8.10. If T is an infinite subset of a set S, then S is also infinite.

Proof. (Proof by Contradiction). Suppose that T is an infinite subset of a finite set S. Then, since S is
finite, for some n ∈ N, there is a bijection f : In → S. Let {f(1), . . . , f(n)} be the corrresponding listing
of elements of S. Now remove from this list those elements of S that are not in T (this is a finite list so
this is a finite procedure). What is left is a listing of elements of T which is equivalent to giving a bijection
from some Im → T with m ≤ n. However, T is supposed to be infinite, so no such bijection is possible. We
conclude that S must also be infinite.

Theorem 8.11. Let S be a countable set and let T be a subset of S. Then T is countable.

Proof. If T is finite, then we are done. Suppose then that T is infinite. The preceding lemma implies that
S is infinite, so it is denumerable (since it is infinite and countable). Hence, there is a bijection f : N→ S.
We can then list the elements of S as

S = {f(1), f(2), . . . }

Now define

A = {n ∈ N | f(n) ∈ T}

This set is nonempty (since T is now assumed to be infinite) and so by the Well-Ordering Axiom for N, it
has a least element, say m1. Similarly, the set A\{m1} has a least member; call it m2. Proceeding like this,
we denote by mk the least element of A\{a1, . . . , ak−1}.

We now define a function g : N→ N by g(n) = an, since T is infinite g(n) is defined for every n ∈ N. Since
an+1 > an > . . . . > a1 g must be injective. The composition f ◦ g : N→ T is also then injective, and since
every element of T must appear somewhere in this listing of S, f ◦ g is also surjective. Hence, there is a
bijection from N to T so T is denumerable, hence countable.

Theorem 8.12. Let S be a non-empty set. Then the following conditions are equivalent.

1. S is countable
2. There exists a injective function f : S → N.
3. There exists a surjective function g : N→ S.

Proof.

1 ⇒ 2: Suppose S is countable. Then either S is finite or S is denumerable.

If S is denumerable, then by definition there exists a bijection f : N → S. But a bijection always has a
bijective inverse and so f−1 will be, in particular, an injective function from S to N.

If S is finite, then by definition there exists a bijection f : In → S. The inverse f−1 : S → In of this mapping
then exists and is bijective. Let ι : In → N be the natural inclusion mapping, where i(k) = k for all k ∈ In.
This is an injective function. The composition i ◦ f−1 : S → In → N, as the composition of two injective
mappings, is itself injective.

2 ⇒ 3: Suppose f : S → N is injective. Then f̃ : S → f(S) , s 
→ f(s) is bijective, and so f̃−1 : f(S) → S
exists and is bijective. Then k be any element of f (S) and define g : N→ S by

g(n) =

{
f̃−1(n) if n ∈ f(S)

k if n /∈ f(S)

This function is obviously surjective and so we are done.

3 ⇒ 1: Suppose there is a surjective function g : N → S. Then for each s ∈ S, f−1 ({s}) is a non-empty
subset of N. By the Well-Ordering Axiom each of these subsets has a minimal element, call it ns. This
gives us a one-to-one pairing of elements of S with elements of N; hence, an injective function from S to N.
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Example 8.13. Show that the set Q of rational numbers is countable

In view of the preceding theorem, it suffices to display an injective function from Q to N. Every rational
number r has a unique presentation as the ratio p/q of two integers which have no common factors. But
then it is easy to check that the function

g : Q→ N ;
p

q
→ 2p3q

is injective. Hence, Q is countable.

Theorem 8.14. The set of real numbers is not countable.

Proof. By a preceding theorem, every subset of a countable set is countable, therefore it suffices to show
that the subset of R consisting of real numbers between 0 and 1 is not countable. So set

J = {x ∈ R | 0 ≤ x ≤ 1}

If J is countable then we can form a list of its elements

J = {x1, x2, . . . }

Every real number is representable in terms of a (possibly infinite) decimal expansion, so we can write

x1 = 0.a11a12a13 . . .

x2 = 0.a21a22a33
...

Now we construct a real number y ∈ J by defining

y = 0.b1b2b3 . . .

where

bi =

{
2 if aii �= 2
3 if aii = 2

Now y evidently belongs to J , however, y can not be any of the xn.For suppose

y = xn

Then, by construction the nth digit its decimal expansion can not be the same as that of xn, so y �= xn.We
conclude if we can not list the elements of J without running into a contradiction. Therefore, J and hence
R is not countable.

Notation 8.15. Let S be a set. We shall denote the cardinal number of S by |S|. We shall say that
|S| = |T | if there exists a bijection f : S → T and that |S| ≤ |T | if there exists an injection f : S → T and
we shall write |S| < |T | if |S| ≤ |T | but |S| �= |T |.

Theorem 8.16. Let S, T, and U be sets.

1. If S ⊂ T , then |S| ≤ |T | .
2. |S| ≤ |S|
3. If |S| ≤ |T | and |T | ≤ |U |, then |S| ≤ |U | .
4. If m,n ∈ N and m ≤ n, then |{1,2, 3, . . . ,m}| ≤ |{1,2, 3, . . . , n}|
5. If S is finite, then |S| ≤ ℵ0

Definition 8.17. Given any set S, we denote the collection of all subsets of S, by P (S) and refer to it as
the power set of S.

Theorem 8.18. For any set S,we have |S| < |P (S)|
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Proof. If S and P(S) are equinumerous, then there must exist a bijection f : S → P(S). The natural
inclusion map

i : S → P(S) , s 
→ {s}

is obviously injective, so |S| ≤ |P(S)|., We need to show that no map from S to P(S) can be surjective.

Let f be an injective map from S to P(S). Then for each x ∈ S , each f(x) is a subset of S. Now for some
x in S it may be that x is in the subset f(x), while for others may not be. Let

T = {x ∈ S | x /∈ f(x)}

Now T ⊂ S, so T ∈ P(S). If f is surjective then T = f(y) for some y ∈ S. But now either y ∈ T or y /∈ T ;
however, both possibililities lead to contradictions.

• If y ∈ T , then s /∈ f(y) = T.
• If y /∈ T,then y /∈ f(y) ⇒ y ∈ T .

Theorem 8.19. |P (N)| = |R|

Problem 8.1. Is there a set S such that |N| < |S| < |R|?


